Proof of Heron’s Formula: (Definitely NOT the way Heron did it!)
Recall the law of cosines:
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Recall the two half angle formulas:
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Now we need to introduce the semiperimeter s =3 (a+ b+ c). Since

(a+b-c)=(a+b+c)-2c=2s-2c,and (a+ b+ c)=2s, we can substitute into our
previous result (1):
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Similarly, we can now consider
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Introducing s into the picture, we can see (c —a+b)=(a+b+c)-2a=2s-2a and
(c+a-b)=(a+b+c)-2b=2s-2b, so substituting this into our previous result,
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The area of a triangle is half the base times the altitude. 1 bh

b
since sinC = ﬁ then i =asinC
a
So the area of the triangle :
K =3absinC 4
Now this can be rewritten as lzab- sinZ(g)
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Substituting from our result from (2) and (3),
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as Heron told us when he lived in Alexandria, but he was so clever, he didn’t need
trigonometry to prove it. An optional project: Make a written report, web-page, video or
PowerPoint presentation of Heron’s Classic Proof, or a proof of the Law of Cosines or
the Law of Sines.




