1. Consider the vector $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$ and the vector $\mathbf{w}=4 \mathbf{i}-2 \mathbf{j}$
(a) Compute $\mathbf{v}+\mathbf{w}$.
(b) Compute $\mathbf{v}-\mathbf{w}$.
(c) Compute $2 \mathbf{v}$.
2. Consider the vector $\mathbf{v}=-2 \mathbf{i}-3 \mathbf{j}$ and the vector $\mathbf{w}=\mathbf{i}+2 \mathbf{j}$
(a) Compute $\mathbf{v}+\mathbf{w}$.
(b) Compute $\mathbf{v}-\mathbf{w}$.
(c) Compute $2 \mathbf{v}$.
(b) Compute the magnitude $\|\mathbf{w}\|$.
(c) Compute the dot product $\mathbf{v} \cdot \mathbf{w}$
(d) What is the angle between \mathbf{v} and \mathbf{w} ?

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

5. Consider the vector $\mathbf{v}=8 \mathbf{i}+6 \mathbf{j}$ and the vector $\mathbf{w}=4 \sqrt{2} \mathbf{i}+4 \sqrt{2} \mathbf{j}$
(a) Compute the magnitude $\|\mathbf{v}\|$.
(b) Compute the magnitude $\|\mathbf{w}\|$.
(d) What is the angle between \mathbf{v} and \mathbf{w} ?
6. Consider the vector $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$ and the vector $\mathbf{w}=5 \mathbf{i}+12 \mathbf{j}$
(a) Compute the magnitude $\|\mathbf{v}\|$.
(b) Compute the magnitude $\|\mathbf{w}\|$.
(c) Compute the dot product $\mathbf{v} \cdot \mathbf{w}$
(d) What is the angle between \mathbf{v} and \mathbf{w} ?

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

(c) Compute the dot product $\mathbf{v} \cdot \mathbf{w}$

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

