Name:
Date: $\qquad$

1. Given $x^{2}+y^{2}=9$, use the algebraic tests to determine symmetry with respect to both axes and the origin.
A) $y$-axis symmetry only
B) $x$-axis symmetry only
C) origin symmetry only
D) $x$-axis, $y$-axis, and origin symmetry
E) no symmetry
2. Use a graphing utility to graph the equation and find all intercepts. Approximate any intercepts to the nearest hundredth if necessary. Use the standard graphing window size. $y=\frac{9 x+2}{x^{2}+2 x+5}$
A)

$x$-intercept(s): $(-0.25,0) ; y$-intercept: none
B)

$x$-intercept(s): $(-0.22,0) ; y$-intercept: $(0,0.4)$
C)

$x$-intercept(s): $(-0.77,0) ; y$-intercept: none
D)

$x$-intercept(s): $(-0.22,0) ; y$-intercept: $(0,0.4)$
E)

$x$-intercept(s): $(-0.22,0) ; y$-intercept: $(0,-0.4)$
3. Find the slope-intercept form of the line passing through the points.
$(9,3),(8,-9)$
A) $y=12 x-27$
B) $y=12 x-105$
C) $y=\frac{1}{0.75} x+\frac{14}{3}$
D) $y=-\frac{1}{0.75} x-\frac{7}{3}$
E) $y=-12 x+111$
4. Find the domain of the function.

$$
g(s)=\frac{-8 s}{s+6}
$$

A) all real numbers $s \neq-6$
B) all real numbers $s \neq-6, s \neq 0$
C) all real numbers
D) $s=-6, s=0$
E) $s=-6$
5. Find the domain of the function.
$f(y)=\sqrt{81-y^{2}}$
A) $-6 \leq x \leq 6$
B) $x \leq-6$ or $x \geq 6$
C) $x \geq 0$
D) $x \leq 6$
E) all real numbers
6. Find the average rate of change of the function from $x_{1}$ to $x_{2}$.

$$
f(x)=x^{2}+x+3 \quad x_{1}=2, x_{2}=4
$$

A) 2
B) -14
C) 14
D) 12
E) 7
7. Write the height $h$ of the rectangle as a function of $x$.

A)

$$
h(x)=-x^{2}+2 x+3
$$

B)

$$
h(x)=-x^{2}-2 x+7
$$

C)

$$
h(x)=x^{2}+2 x-3
$$

D)

$$
h(x)=x^{2}-2 x-5
$$

E)

$$
h(x)=-x^{2}+2 x-5
$$

8. Which graph represents the function?

$$
f(x)= \begin{cases}-3 x, & x<0 \\ x-3, & x \geq 0\end{cases}
$$

A)

B)

C)

D)

E)

9. Describe the sequence of transformations from the related common function $f(x)=x^{3}$ to $g$.

$$
g(x)=5(x-2)^{3}
$$

A) horizontal shift 5 units right; then vertical stretch by a factor of 5
B) horizontal shift 5 units left; then vertical stretch by a factor of 5
C) horizontal shift 5 units left; then vertical shrink by a factor of 5
D) vertical shift 5 units up; then vertical shrink by a factor of 5
E) vertical shift 5 units down; then vertical shrink by a factor of 5

F: shift 2 to right stretch factor of 5
10. Write an equation for the function that is described by the following characteristics:
the shape of $f(x)=x^{2}$, but moved nine units down, three units to the left, and then reflected in the $x$-axis
A) $g(x)=3-(x-7)^{2}$
B) $g(x)=4-(x+5)^{2}$
C) $g(x)=-(x+6)^{2}-4$
D) $g(x)=-(x+3)^{2}-7$
E) $g(x)=7-(x+3)^{2}$
F) $g(x)=(x+3)^{\wedge} 2-9$
11. Find $f \circ g$. Chapter 6 section 1
$f(x)=2 x-1 \quad g(x)=x-3$
A) $(f \circ g)(x)=2 x-7$
B) $(f \circ g)(x)=2 x-4$
C) $(f \circ g)(x)=2 x^{2}-7 x+3$
D) $(f \circ g)(x)=x+2$
E) $(f \circ g)(x)=x-4$
12. The monthly $\operatorname{cost} C$ of running the machinery in a factory for $t$ hours is given by $C(t)=30 t+500$.

The number of hours $t$ needed to produce $x$ products is given by

$$
t(x)=4 x
$$

Find the equation representing the cost $C$ of manufacturing $x$ products.
A) $C(x)=280 x+400$
B) $C(x)=280 x+28000$
C) $C(x)=79 x+500$
D) $C(x)=74 x+470$
E) $C(x)=70 x+418$
F) $C(x)=120 x+500$
13. After determining whether the variation model below is of the form $y=k x$ or $y=\frac{k}{x}$, find the value of $k$.

| $x$ | 24 | 48 | 72 | 96 | 120 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | $\frac{1}{36}$ | $\frac{1}{72}$ | $\frac{1}{108}$ | $\frac{1}{144}$ | $\frac{1}{180}$ |

A) $k=\frac{1}{24}$
B) $k=\frac{2}{3}$
C) $k=\frac{1}{12}$
D) $k=\frac{5}{4}$
E) $k=\frac{3}{2}$
14. After determining whether the variation model below is of the form $y=k x$ or $y=\frac{k}{x}$, find the value of $k$.

| $x$ | 80 | 85 | 90 | 95 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 48 | 51 | 54 | 57 | 60 |

A) $k=5$
B) $k=\frac{1}{5}$
C) $k=\frac{5}{3}$
D) $k=\frac{3}{5}$
E) $k=\frac{5}{48}$
15. Find a mathematical model for the verbal statement:
"The force of attraction $F$ between two oppositely charged particles varies directly as the product of the magnitudes $Q_{1}$ and $Q_{2}$ of the charges and inversely as the square of the distance $d$ between the particles."
A)

$$
F=k Q_{1} Q_{2} d^{2}
$$

B)

$$
F=\frac{k Q_{1}}{Q_{2} d^{2}}
$$

C)

$$
F=\frac{k Q_{1} Q_{2}}{d^{2}}
$$

D)

$$
F=\frac{k Q_{2}}{Q_{1} d^{2}}
$$

E)

$$
F=\frac{k d^{2}}{Q_{1} Q_{2}}
$$

16. Find all real zeros of the polynomial $f(x)=x^{3}+9 x^{2}-49 x-441$ and determine the mutiplicity of each.

Chapter 5 section 5
A) $x=6$, multiplicity $2 ; x=5$, multiplicity 1
B) $x=9$, multiplicity $1 ; x=-9$, multiplicity $1 ; x=2$, multiplicity 1
C) $x=5$, multiplicity $2 ; x=-6$, multiplicity 1
D) $x=-6$, multiplicity $1 ; x=-5$, multiplicity $1 ; x=5$, multiplicity 1
E) $x=5$, multiplicity 3
F) $x=-9$, mult $=1$; $x=-7$, mult $1 ; x=7$, mult 1
17. A farmer has 288 feet of fencing and wants to build two identical pens for his prize-winning pigs. The pens will be arranged as shown. Determine the dimensions of a pen that will maximize its area.

A) $27^{\prime} \times 36^{\prime}$
B) $45^{\prime} \times 120^{\prime}$
C) $21^{\prime} \times 52^{\prime}$
D) $13^{\prime} \times 224^{\prime}$
E) $10^{\prime} \times 120^{\prime}$
F) $48^{\prime} \times 36^{\prime}$
18. Write the standard form of the equation of the parabola that has a vertex at $\left(\frac{-2}{3}, \frac{1}{9}\right)$ and passes through the point $(2,-1)$.
A) $f(x)=-\frac{5}{4}\left(x+\frac{2}{3}\right)^{2}+\frac{1}{9}$
B) $f(x)=-\frac{5}{32}\left(x-\frac{3}{2}\right)^{2}+\frac{1}{9}$
C) $f(x)=-\frac{5}{32}\left(x+\frac{2}{3}\right)^{2}+\frac{1}{9}$
D) $f(x)=-\frac{5}{4}\left(x-\frac{2}{3}\right)^{2}-\frac{1}{9}$
E) $f(x)=-\frac{5}{8}\left(x-\frac{3}{2}\right)^{2}-\frac{1}{9}$
19. From the graph of the quadratic function $f(x)=(x-3)^{2}-1$, determine the equation of the axis of symmetry.
A) $x=3$
B) $x=-1$
C) $x=1$
D) $x=-3$
E) $x=\frac{1}{3}$
20. If $x=\sqrt{7}$ is a root of $x^{3}+x^{2}-7 x-7=0$, use synthetic division to factor the polynomial completely and list all real solutions of the equation.
A) $(x-1)(x-\sqrt{7})^{2} ; 1, \sqrt{7}$
B) $(x-1)^{2}(x-\sqrt{7}) ; 1, \sqrt{7}$
C) $(x+1)(x-\sqrt{7})(x+\sqrt{7}) ;-1, \sqrt{7},-\sqrt{7}$
D) $(x+1)(x+\sqrt{7})^{2} ;-1,-\sqrt{7}$
E) $(x+1)(x+\sqrt{7})^{2} ;-1,-\sqrt{7}$
21. Use synthetic division to divide.
$\frac{12 x^{3}+49 x^{2}+35 x-12}{4 x-1}$
A) $4 x^{2}+28 x+16$
B) $9 x^{2}+36 x+12$
C) $48 x^{2}+28 x+144$
D) $12 x^{2}+84 x+144$
E) $3 x^{2}+13 x+12$
F) $12 x^{\wedge} 2+52 x+48$
22. Find all $x$-intercepts for the function $y=\frac{-6 x+7}{7 x+6}$.
A) $x=-\frac{3}{5}$
B) $x=\frac{7}{2}$
C) $x=-\frac{1}{3}$
D) $x=\frac{1}{3}$
E) There are no $x$-intercepts.
F) $x=7 / 6$
23. Graph the solution of $x^{2}-5 x-14 \geq 0$ on a number line.

A)

$-2$
B)

$\begin{array}{ll}-2 & 7\end{array}$
C)


5
D)

E)

24. Identify the graph of the function.

$$
f(x)=1-2^{x}
$$

A)

B)

C)

D)

E)


Page 15

## Answer Key - Untitled Exam-1

1. D
2. B
3. B
4. A
5. A
6. E
7. A
8. C
9. A F
10. B F
11. A
12. A F
13. B
14. D
15. C
16. B F
17. A F
18. C
19. A
20. C
21. E F
22. B F
23. B
24. B
