I. (3 points) Graph $f(x)=-x^{2}-5 x-6$ label the vertex, the y intercept and the x intercepts
II. (2 points) Find the equation of the parabola whose vertex is at $(2,-3)$ and goes through $(0,-6)$
III. (3 points) Consider the following triangle:

IV. (5 points) Graph $y=-2 \sin (4 x+\pi)$

In general $y=a \sin (b x+c)$
(a) $b=$
(b) $c=$
(c) Period: $\frac{2 \pi}{b}=$
(d) Phase shift starting point: $-\frac{c}{b}=$
(e) Graph:
V. (4 points) Consider the function

$$
f(x)=\frac{3 x^{2}+x}{4 x^{2}-3}
$$

(a) What is the domain of f ?
(b) What are the equations of the two vertical asymptotes?
(c) What is the equation of the horizontal asymptote?
(d) What are the coordinates of the points that are the x and y intercepts of f ?
VI. (2 points) Consider the function

$$
g(x)=x^{3}-7 x^{2}+19 x-13
$$

(a) Use synthetic division to find a zero of g.
(b) What are the other two zeros of g ?
VII. What is the exact value of
(a) $\sin \frac{\pi}{6}=$
(b) $\tan \frac{\pi}{4}=$
(c) $\cos \frac{\pi}{2}=$
(d) $\sec \frac{\pi}{3}=$
(e) $\sin \frac{\pi}{2}=$
VIII. Convert to radians
(a) $225^{\circ}=$
(b) $135^{\circ}=$
(c) $180^{\circ}=$
(d) $-330^{\circ}=$
IX. Find the inverse $\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]^{-1}=$

X . The order of $\left[\begin{array}{rr}2 & 1 \\ 1 & 3 \\ -1 & 2\end{array}\right]$ is
XI. True (a) or False (b):
$\left[\begin{array}{llll}1 & 1 & 3 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 2\end{array}\right]$ is in reduced row-echelon form
XII. The function $f(x)=\sin x$ is zero
(a) When x is an integer multiple of π
(b) When x is an odd multiple of $\frac{\pi}{2}$
(c) $f(x)$ is never zero
XIII. The following is a reduced row echelon matrix that represents a dependent system of equations. What is x in terms of any arbitrary z
$\left[\begin{array}{llll}1 & 1 & 3 & 3 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0\end{array}\right]$
XIV. If we define $f(x)=x^{3}+2$, is it even, odd or neither?
XV. What is the graph of $f(x)=\tan (x)$?
XVI. Which is the graph of $f(x)=\sec (2 x)$?
XVII. (5 points) Consider an investment of $\$ 10,000$ that pays 5% interest If interest is compounded quarterly, what is the balance after 3 years? If interest is compounded monthly? If interest is compounded continuously?
XVIII. (1 point) Use the Law of Sines below:
(Round your answer to 2 decimal places)

XIX. (2 points) Use the Law of Cosines below:
(Round your answer to 2 decimal places)

XX. (3 points) The cost of making widgets depends upon the number of widgets produced. If x represents the number of units manufactured, then the cost in dollars can be computed by the following function:
$C(x)=150,000-110 x+.055 x^{2}$
What is the cost of making 10 units? What is the best x so that cost is at a minimum?

What is the lowest cost?
XXI.

XXII.
XXIII. If $\sin x^{\circ}=\frac{4}{5}$, than $x^{\circ} \approx$
XXIV. What is determinant of:

$$
\left|\begin{array}{rr}
5 & 1 \\
1 & -1
\end{array}\right|
$$

XXV. Use Cramer's Rule to solve the system:

$$
\begin{aligned}
& 5 x+y=11 \\
& x-y=1
\end{aligned}
$$

XXVI.

How many solutions for B ?
XXVII. Multiply
$\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & -1 & 5 \\ 2 & 0 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=$
XXVIII. Consider the relation $\{(5,2),(6,3),(7,4)\}$.
(a) The domain is
(b) The range is
(c) Is this relation a function?
(d) This is one-to-one?
XXIX. If $f(x)=2 x^{2}+x+3$, what is the difference quotient between 1 and 2? Hint: This is the slope between $(1, f(1))$ and $(2, f(2))$
XXX. Use partial fraction decomposition to find A and B:

$$
\frac{5 x-8}{(x-2)(x-1)}=\frac{A}{x-2}+\frac{B}{x-1}
$$

XXXI. What is the vertex of $f(x)=(x-3)^{2}+2$?
XXXII. What is the complex conjugate of $2+i$?
XXXIII. What are the square roots of -49 ?
XXXIV. Simplify $\frac{8+2 i}{2 i}$
XXXV. Expand $\log _{3} 4 \sqrt{x}$
XXXVI. Simplify $4 \log _{5} x-\log _{5} y$
XXXVII. Solve for x : $2^{2 x}+3\left(2^{x}\right)=10$
XXXVIII. If it takes 10 years to triple your investment (Compounded continuously), what is the annual percentage rate (APR)?
XXXIX. $\log _{3} 8 \cdot \log _{8} 9=$
XL. 4 bunnies after 8 weeks become 25 bunnies. At this rate, how long before they are 100 ?
XLI. The half life of Plutonium is 14.4 years. How long will it take to be only 25 percent?
XLII. Find the equation of line that connects $(0,2)$ with $(5,10)$
XLIII. Find the equation of parabola that connects $(2,0)$ with vertex $(5,10)$
XLIV. Find the equation of exponential function that connects $(0,1)$ with $(5,10)$

Hints \& Solutions

1. Vertex: $\left(-\frac{5}{2}, \frac{1}{4}\right)$ intercepts: $(-3,0),(-2,0),(0,-6)$
2. $y=-\frac{3}{4}(x-2)^{2}-3$
3. $r=10, \theta=30^{\circ}$
4. $b=4, c=\pi$ Period $=\frac{\pi}{2}$ Start at $\left(-\frac{\pi}{4}, 0\right)$ then down to minimum at $\left(-\frac{\pi}{8},-2\right)$ up to $(0,0)$ then maximum at $\left(\frac{\pi}{8}, 2\right)$ then complete one cycle with $\left(\frac{\pi}{4}, 0\right)$
5. domain: $x \neq \pm \frac{\sqrt{3}}{2}$ asymptotes at $x=\frac{\sqrt{3}}{2}$ and $x=-\frac{\sqrt{3}}{2}$, horizontal asymptote $y=\frac{3}{4}$ intercepts $(0,0),\left(-\frac{1}{3}, 0\right)$
6. zeros: $1,3 \pm 2 i$
7. $a . \frac{1}{2}, b .1, c .0, d .2, e .1$
8. a. $\frac{5 \pi}{4}, b . \frac{3 \pi}{4}, c . \pi, d . \frac{\pi}{6}$
9. $\left[\begin{array}{rr}\frac{2}{7} & -\frac{1}{7} \\ \frac{1}{7} & \frac{3}{7}\end{array}\right]$
10. 3×2
11. No, leading term of second row should be a 1
12. integer multiples of π
13. $y=6-z$ so $x=3-3 z-(6-z)=-3-2 z$
14. neither as $f(-x)=-x^{3}+2$
15. asymptotes at odd multiples of $\frac{\pi}{2}$ zeros at integer multiples of π
16. asymptotes are at intervals of $\frac{\pi}{4}$ starting
17. $\$ 11,607.50, \$ 11,614.70, \$ 11,618.30$
18. $y=\frac{20 \sin 47}{\sin 29} \approx 30.1707586268$
19. $z=\sqrt{20^{2}+22^{2}-2(20)(22) \cos 25} \approx 9.2978$
20. $f(10)=\$ 148,906$. 1,000 units is the best with a cost of $\$ 95,000$
21. $a=b=\frac{10 \sin 62}{\sin 56} \approx 10.65^{\circ}$
22. $x=\sqrt{10^{2}+15^{2}-300 \cos 105} \approx 20.066$
23. $\sin ^{-1} .8 \approx 53.13^{\circ}$
24. -6
25. $x=\frac{D_{x}}{D}=\frac{-12}{-6}=2, y=\frac{D_{y}}{D}=\frac{-6}{-6}=1$
26. two solutions possile: $B=\sin ^{-1}\left(\frac{18 \sin 16}{15}\right) \approx 19.315$ so the alternate $B^{\prime}=180-19.315=160.685$
27. $\left[\begin{array}{r}8 \\ 14 \\ 6\end{array}\right]$
28. domain $\{5,6,7\}$ range $\{2,3,4\}$, a one-to-one function
29. 7
30. $A=2, B=3$ So we conclude

$$
\frac{5 x-8}{(x-2)(x-1)}=\frac{2}{x-2}+\frac{3}{x-1}
$$

31. $(3,2)$
32. $2-i$
33. $\pm 7 i$
34. $1-4 i$
35. $\log _{3} 4+\frac{1}{2} \log _{3} x$
36. $\log _{5}\left(x^{4} y\right)$
37. $\left(2^{x}+5\right)\left(2^{x}-2\right)=0$ so $x=1$
38. $\frac{\ln 3}{10} \approx 10.986 \%$
39. 2
40. rate is $\frac{\ln 25 / 4}{8}$ so $t=\frac{8 \ln 100}{\ln (25 / 4)}$ about 20.1035 weeks
41. rate $=\frac{\ln .5}{14.4}, t=\frac{14.4 \ln .25}{\ln .5}$ or about 28.8 years
42. $y=\frac{10}{3} x-\frac{20}{3}$
43. $y=-\frac{10}{9}(x-5)^{2}+10$
44. $e^{5 r}=10$ so $r=\frac{\ln 10}{5}$ thus
$y=e^{x \ln (10) / 5} \approx e^{.461517 x}$
