General Form of a "smiling" Parabola whose 5. What is the directrix, vertex and focus of vertex is (h, k) is $x^{2}-4 x=2 y ?$
$(x-h)^{2}=4 a(y-k)$
where a is the distance between the parabola 6. A Typical Test question is to describe a and its focus (and for that matter, its directrix too!).

A negative a means its goes down:

$$
(x-h)^{2}=-4 a(y-k)
$$

and if you want a side-ways parabola swap the x and the y :

$$
\begin{aligned}
& (y-k)^{2}=4 a(x-h) \text { for }(\\
& \left.(y-k)^{2}=-4 a(x-h) \text { for }\right)
\end{aligned}
$$

1. What is the equation of a parabola whose directrix is $x=-8$ and whose vertex is $(0,0)$, and whose focus is $(8,0)$?
2. What is the directrix, vertex and focus of $x^{2}=12 y-12$?
3. What is the equation of a parabola whose directrix is $x=-4$ and whose vertex is $(-2,3)$, and whose focus is $(0,3)$?
4. What is the directrix, vertex and focus of $(x+4)^{2}=16(y+2) ?$

Answers

1. $(y-0)^{2}=4(8)(x-0)$, that is $y^{2}=32 x$
2. $(x-0)^{2}=4(3)(y-1)$ so the vertex is $(0,1) a=3$ so the focus is above at $(0,4)$ and the directrix is below at $y=-2$
3. $(y-3)^{2}=8(x+2)$
4. Vertex $V(-4,-2)$ Since $a=4$, the focus is $F(-4,2)$ the directrix below at $y=-6$
5. The equation needs a little "tweaking" for our purposes.

$$
\begin{aligned}
x^{2}-4 x & =2 y \\
(x-2)^{2} & =2 y+4 \\
(x-2)^{2} & =2(y+2)
\end{aligned}
$$

So vertex is $V(2,-2)$ Since $a=2 F(2,0)$ and directrix is below $y=-4$
6. It goes to the left so use the form $(y-k)^{2}=4 a(x-h)$

The focus is $5-1=4$ away from the directrix, so $a=2$. We have therefore the vertex at $(3,2)$, and $4 a=4(2)=8$, so the formula becomes
$(y-k)^{2}=-4 a(x-h)$
$(y-2)^{2}=-8(x-3)$

