$$
\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c}
$$

1. ASA

Here only one possibility for α
(a) Find α
(b) Find b
(c) Find c

2. AAS (or SAA)

Again, there is only one possibility for the missing angle
(a) Find α
(b) Find a
(c) Find c
3. $\mathrm{SSA}($ or ASS) Here is the tricky one. There is more than one possibility since two angles are missing. In fact there are 3: two solutions, one solution and no solution.

SSA (No Solution)

Find β

SSA (2 solutions)

(a) Find γ (we'll call it γ_{1})
(b) Find the γ_{2} (The supplement of γ_{1})
(c) Note whether $\gamma_{2}+40^{\circ}$ is still under 180° (If it is over 180° then α has no possible size, so we only would consider γ_{1})
(d) Find α_{1} (based on γ_{1})
(e) Find a_{1} (based on α_{1})
(f) Find α_{2} (based on γ_{2})
(g) Find a_{2} (based on α_{2})

SSA (One Solution)

(a) Find γ (we'll call it $\left.\gamma_{1}\right)$
(b) Find the γ_{2} (The supplement of γ_{1})
(c) Note whether $\gamma_{2}+40^{\circ}$ is still under 180° (If it is over 180° then α has no possible size, so we only would consider γ_{1})

[^0]
[^0]: Answers $88.0 \mathrm{I}=0,00 . \pm \mathrm{I}=\mathrm{o}, \mathrm{c} 8=\mathrm{o}$. Ses. $\mathrm{P}=\mathrm{o}, 18 . \mathrm{e}=\mathrm{d}, 08=0 . \mathrm{I}$

