1. ASA

- 2. AAS (or SAA) Again, there is only one possibility for the missing angle
 - (a) Find α
 - (b) Find a
 - (c) Find c
- 3. SSA(or ASS) Here is the tricky one. There is more than one possibility since two angles are missing. In fact there are 3: two solutions, one solution and no solution.

Find β

- (a) Find γ (we'll call it γ_1)
- (b) Find the γ_2 (The supplement of γ_1)
- (c) Note whether $\gamma_2 + 40^\circ$ is still under 180^0 (If it is over 180° then α has no possible size, so we only would consider γ_1)
- (d) Find α_1 (based on γ_1)
- (e) Find a_1 (based on α_1)
- (f) Find α_2 (based on γ_2)
- (g) Find a_2 (based on α_2)

- SSA (One Solution)
- (a) Find γ (we'll call it γ_1)
- (b) Find the γ_2 (The supplement of γ_1)
- (c) Note whether $\gamma_2 + 40^\circ$ is still under 180^0 (If it is over 180° then α has no possible size, so we only would consider γ_1)

1. $\alpha = 80, b = 9.81, c = 4.292, \alpha = 85, a = 14.09, c = 10.83$ areward **3.** β impossible, $\frac{7 \sin 70}{72} > 1$ **SSA 2 sol:** $\gamma_1 = 74.6\alpha_1 = 65.4, a_1 = 2.83$ $\gamma_2 = 105.38, \alpha_2 = 34.62, a_2 = 1.77$ **SSA 1 sol** $\gamma = 28.82, \alpha = 111.18a = 5.8$

