3. Consider matrix A. What result if $R_{1}=-2 r_{2}+r_{1}$?
4. Solve for x :

$$
\left|\begin{array}{lll}
1 & 1 & 0 \\
x & 1 & 1 \\
1 & 0 & 1
\end{array}\right|=3
$$

(c) $D_{y}=$
(d) $x=$
(e) $y=$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
-2 & 3 & 2
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
2 & 4 & 3
\end{array}\right] \\
& C=\left[\begin{array}{cc}
2 & 1 \\
1 & 3 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

1. $A C=$
(b) $D_{x}=$
2. $A-B=$
3. Use Cramer's Rule to solve the system of equations:

$$
\begin{array}{r}
4 x+y=10 \\
6 x+2 y=14
\end{array}
$$

(a) $D=$
6. Multiply

$$
\left[\begin{array}{ll}
4 & 1 \\
6 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-3 & 2
\end{array}\right]
$$

Did you get the identity matrix? Good! That's because

$$
\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-3 & 2
\end{array}\right]
$$

is the inverse matrix of

$$
\left[\begin{array}{ll}
4 & 1 \\
6 & 2
\end{array}\right]
$$

7. Multiply

$$
\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
10 \\
14
\end{array}\right]
$$

Did you get a matrix that matched the answer you found in question 5 , parts (d) and (e)? Good! We can solve a system of equations by multiplying the inverse matrix to the answer column.
8. This is how to find the inverse of

$$
\left[\begin{array}{ll}
4 & 1 \\
6 & 2
\end{array}\right]
$$

(a) swap the top left with the bottom right:

$$
\left[\begin{array}{ll}
2 & 1 \\
6 & 4
\end{array}\right]
$$

(b) change the sign of the top right and bottom left:

$$
\left[\begin{array}{cc}
2 & -1 \\
-6 & 4
\end{array}\right]
$$

(c) now multiply by the reciprocal of the determinate (Since the determinate of the original matrix is 2 , we multiply by $1 / 2$):

$$
\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
-6 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-3 & 2
\end{array}\right]
$$

9. Follow the 3 steps of number 8 to find the inverse of $\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$
10. Now Solve

$$
\begin{aligned}
& 2 x+5 y=9 \\
& 3 x+8 y=4
\end{aligned}
$$

by multiplying the inverse matrix you found in question 9 with $\left[\begin{array}{l}9 \\ 4\end{array}\right]$
11. Solve by any method (Yes, your calculator can tell you the inverse of matrix A by typing $[A]^{-1}$)

$$
\begin{aligned}
4 x-6 y-12 z & =-11 \\
12 x+9 y-4 z & =9 \\
3 x+3 y-6 z & =-1
\end{aligned}
$$

12. There are 200 marbles in a bag, some are blue and some are red. The blue balls weigh 2 oz. each, while the red balls weigh 2.5 oz . each. If the total weighs 29.25 pounds (468 oz), how many red balls are there?
