Hypberbola WS

Name:

Examples

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Center: (h, k) Asymptotes are the diagonals of the box made if you go up and down b from k and left and right a from h. Vertices are at $(h \pm a, k)$ Foci are $(h \pm c, k)$ where $c=\sqrt{a^{2}+b^{2}}$

1. Graph the equation

$$
\frac{(x-2)^{2}}{9}-\frac{(y-1)}{16}=1
$$

This is centered at $(2,1), a=3, b=4$,
$c=\sqrt{9+16}=5$
The slopes of the asymptotes are $\pm \frac{4}{3}$. Use the point-slope form of a line with the center:

$$
y-k= \pm m(x-h)
$$

we get $y-1=\frac{4}{3}(x-2)$ aka $y=\frac{4}{3} x-\frac{5}{3}$
and $y-1=-\frac{4}{3}(x-2)$ aka $y=-\frac{4}{3} x+\frac{11}{3}$

2. Find the equation of the hyperbola with Foci $F_{1}(13,3)$ and $F_{2}(-7,3)$ and vertex $V_{2}(11,3)$

Solution The center is half way from F_{1} and F_{2} : $\frac{13+(-7)}{2}=3$, so the center is $(3,3)$. That means the vertex $(11,3)$ is 8 away from the center, so $a=8, c=10$ and $b=\sqrt{100-64}=6$. The equation is then:

$$
\frac{(x-3)^{2}}{64}-\frac{(y-3)^{2}}{36}=1
$$

The vertical version works similarly, but the x^{2} term is negative:

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Center: (h, k) Asymptotes are the diagonals of the box made if you go up and down a from k and left and right b from h. Vertices are at $(h, k \pm a)$ Foci are $(h, k \pm c)$ where $c=\sqrt{a^{2}+b^{2}}$

Now you try

1. Graph

$$
\frac{(x-1)^{2}}{144}-\frac{(y-3)^{2}}{25}=1
$$

2. Graph

$$
\frac{x^{2}}{4}-\frac{(y-1)^{2}}{9}=1
$$

3. Find the equation of

Solutions

1. Here the center is $(1,3), a=12, b=5$ and $c=$ $\sqrt{144+25}=13$ so $F_{1}(-12,3)$. Draw a box going up and down 5 from $(1,3)$ and left and right 12 from (1,3). The Asymptotes are $y-3=\frac{5}{12}(x-1)$ or $y=\frac{5}{12} x+\frac{31}{12}$ and $y-3=-\frac{5}{12}(x-1)$ or $y=-\frac{5}{12} x-\frac{41}{12}$

2. Sabame idea:

3.

$$
\frac{(x+1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1
$$

