Hypberbola WS

Name:

Examples

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Center: (h, k) Asymptotes are the diagonals of the box made if you go up and down b from k and left and right a from h. Vertices are at $(h \pm a, k)$ Foci are $(h \pm c, k)$ where $c = \sqrt{a^2 + b^2}$

1. Graph the equation

$$\frac{(x-2)^2}{9} - \frac{(y-1)}{16} = 1$$

This is centered at (2,1), a = 3, b = 4, $c = \sqrt{9 + 16} = 5$

The slopes of the asymptotes are $\pm \frac{4}{3}$. Use the point-slope form of a line with the center:

$$u - k = +m(x - h)$$

we get
$$y - 1 = \frac{4}{3}(x - 2)$$
 aka $y = \frac{4}{3}x - \frac{5}{3}$

and
$$y - 1 = -\frac{4}{3}(x - 2)$$
 aka $y = -\frac{4}{3}x + \frac{11}{3}$

2. Find the equations of the hyperbola with Foci $F_1(13,3)$ and $F_2(-7,3)$ and vertex $V_2(11,3)$

Solution The center is half way from F_1 and F_2 : $\frac{13+(-7)}{2} = 3$, so the center is (3,3). That means the vertex (11,3) is 8 away from the center, so a = 8, c = 10 and $b = \sqrt{100-64} = 6$. The equation is then:

$$\frac{(x-3)^2}{64} - \frac{(y-3)^2}{36} = 1$$

The vertical version works similarly, but the x^2 term is negative:

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Center: (h, k) Asymptotes are the diagonals of the box made if you go up and down *a* from *k* and left and right *b* from *h*. Vertices are at $(h, k \pm a)$ Foci are $(h, k \pm c)$ where $c = \sqrt{a^2 + b^2}$

Now you try

$$\frac{(x-1)^2}{144} - \frac{(y-3)^2}{25} = 1$$

2. Graph

$$\frac{x^2}{4} - \frac{(y-1)^2}{9} = 1$$

3. Find the equation of

Solutions

1. Here the center is (1,3), a = 12, b = 5 and $c = \sqrt{144 + 25} = 13$ so $F_1(-12, 3)$. Draw a box going up and down 5 from (1,3) and left and right 12 from (1,3). The Asymptotes are $y-3 = \frac{5}{12}(x-1)$ or $y = \frac{5}{12}x + \frac{31}{12}$ and $y-3 = -\frac{5}{12}(x-1)$ or $y = -\frac{5}{12}x - \frac{41}{12}$

