The Difference Quotient, or "rate of change" (otherwise known as slope!) is

$$
\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}
$$

So the "average rate of change" of a function from x to $\mathrm{x}+\mathrm{h}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{h}
$$

Here are some examples:
A. Consider the difference quotient of $g(x)=x^{2}+2$ from 2 to 3 :

$$
\begin{aligned}
\frac{g(3)-g(2)}{3-2} & =\frac{\left(3^{2}+2\right)-\left(2^{2}+2\right)}{1} \\
& =11-6 \\
& =5
\end{aligned}
$$

This means the slope of the secant line is 5. In other words, from 2 to 3 , the average rate of change (slope) is 5 .

B. What is the difference quotient for $g(x)=x^{2}+2$ between 1 and x ?

$$
\begin{aligned}
\frac{g(x)-g(1)}{x-1} & =\frac{\left(x^{2}+2\right)-\left(1^{2}+2\right)}{x-1} \\
& =\frac{x^{2}+2-3}{x-1} \\
& =\frac{x^{2}-1}{x-1} \\
& =\frac{(x-1)(x+1)}{x-1} \\
& =x+1
\end{aligned}
$$

C. What is the diffence quotient for $g(x)=x^{2}+2$ between x and $x+h$?

$$
\begin{aligned}
\frac{g(x+h)-g(x)}{(x+h)-x} & =\frac{g(x+h)-g(x)}{h} \\
& =\frac{\left((x+h)^{2}+2\right)-\left(x^{2}+2\right)}{h} \\
& =\frac{\left(x^{2}+2 x h+h^{2}+2\right)-x^{2}-2}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =2 x+h
\end{aligned}
$$

So here we have a formula. The answer from part C can confirm the answer from part A. In part A, let $x=2$ and $h=1$ (so $x+h=$ 3). Then the average rate of change is

$$
2 x+h=2(2)+1=5
$$

If the function is a line, the slope is always the same. If the function is some other curve, however, it will change. In that case the slope depends on which x, and how much h is added to x.

1. If $f(x)=5 x-3$, what is the average rate of change of f from 2 to 3 ?
2. What is the average rate of change of f between 1 and x ?
3. What is the average rate of change of f between x and $x+h$?
4. If $g(x)=3 x^{2}-5 x$, what is the average rate of change of g from 1 to 2 ?
5. If $p(x)=\frac{1}{x-1}$, what is the average rate of change of p from 2 to 3 ?
6. What is the average rate of change of p between 2 and x ?
7. What is the average rate of change of p between x and $x+h$?
8. What is the average rate of change of g between 1 and x ?
9. What is the average rate of change of g between x and $x+h$?
: RT9wanA

