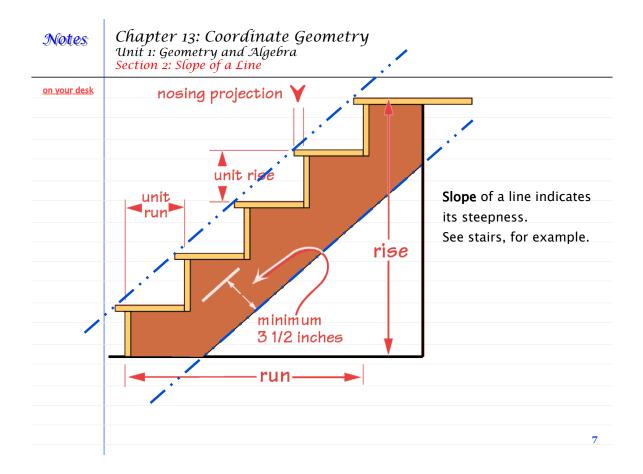
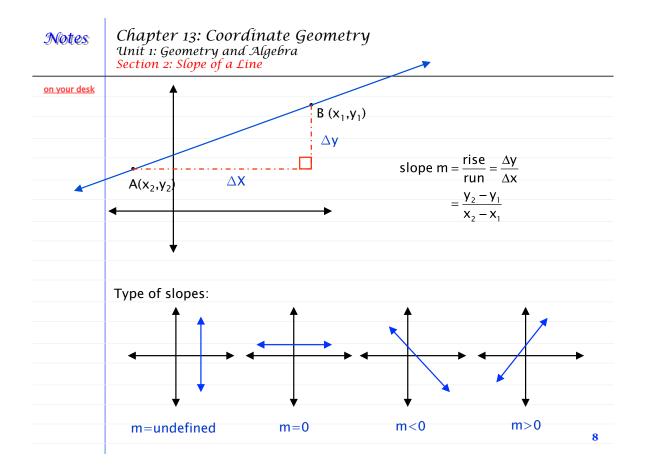
Notes	Chapter 13: Coordinate Geometry Unit 1: Geometry and Algebra Section 1: The Distance Formula	
on your desk	Let's review some basic terms you learned in Algebra. y Coordinate plane shown is referred as "x-y coordinate plane", "rectangular coordinate plane", or "Cartesian	
<u>13.5</u>	coordinate plane."	×
<u>13.2</u>		
<u>13.3</u>	↑	
13.4		
	B	
13.6	d Using Pythagorean theorem,	
13.7	$\Delta \mathbf{y} \qquad \mathbf{d}^2 = (\Delta \mathbf{x})^2 + (\Delta \mathbf{y})^2$	
13.8	$A = \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2}$	
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	Example	
	Find the distance between $A(4,-2)$ and $B(1,2)$.	
		1


Notes	Chapter 13: Coor Unit 1: Geometry and Section 1: The Distan	dinate Geometry 1 Algebra ce Formula			
<u>on your desk</u>	Theorem 13.1 The L	Distance Formula			
	The distance betwee	n points (x_1, y_1) and (x_2, y_1) d = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	y ₂) is given by:		
	Example 1				
	Find the distance be	tween the origin and the	point names.		
	(a) (0,-6)	(b) (8,0)	(c) (7,24)		
	Example 2				
	Find the distance between the points. Write answer in simplest form.				
	(a) (2,5),(8,5)	(b) (-3,-	-8),(2,4)		
	(c) (6,0),(5,1)	(e) (9,4)	,(1,-8)		
				2	
	1				


Notes	Chapter 13: Coordínate Geometry Unit 1: Geometry and Algebra Section 1: The Distance Formula	
on your desk	(x,y)	Using Pythagorean theorem, $(\Delta x)^2 + (\Delta y)^2 = r^2$ $(x_2 - x_1)^2 + (y_2 - y_1)^2 = r^2$

Nøtes	Chapter 13: Coordínate Geo Unit 1: Geometry and Algebra Section 1: The Distance Formula	metry		
<u>on your desk</u>	Theorem 13.2 The Equation of the Circle			
	An equation of the circle with cer	nter (a,b) and radius r is		
	$\left(\mathbf{x}-\mathbf{h}\right)^{2}+0$	$\left(\mathbf{y} - \mathbf{k}\right)^2 = \mathbf{r}^2$		
	Example 3			
	Find the equation of a circle with	the given center and radius.		
	(a) (4,-3), r=5	(b) (-1,-2), $r = \sqrt{3}$		
	Example 2			
	Find the center and radius of eac			
	(a) $(x-8)^2 + (y-1)^2 = 64$	(b) $(x+9)^2 + (y-7)^2 = 25$		

Notes	Chapter 13: Coordinate Geomet Unit 1: Geometry and Algebra Section 5: The Midpoint Formula	try
on your desk	R (x ₁ ,y ₁)	What do you see? What is the coordinate of the midpoint M? How can you prove it?

Notes on your desk	Chapter 13: Coordinate Geometry Unit 1: Geometry and Algebra Section 5: The Midpoint Formula Theorem 13.5 The Midpoint Formula
	The midpoint of the segment that joins points (x_1,y_1) and (x_2,y_2) is the point (x_1+x_2, y_1+y_2)
	$\left(\frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}\right)$
	Example 1
	Find the midpoint of segment AB.
	(a) A(6,3), B(-2,-5) (b) A(a,b), B(c,b)
	Example 2
	M $(4,-2)$ is the midpoint of the segment AB. If A has coordinates $(2,-5)$,
	find the coordinate of B. $(x+9)^{2} + (y-7)^{2} = 25$
	6

Notes	Chapter 13: Coordinate Geometry Unit 1: Geometry and Algebra Section 2: Slope of a Line				
on your desk	Example 1				
	Always, sometimes, or never.				
	a) The slope of a vertical line is	zero.			
	b) The slope of a horizontal line is	zero.			
	c) The slope of a line that rises to the righ	t is positive.			
	d) The slope of a line that falls to the right	t is negative.			
	Example 2				
	Find the slope of the line through the two points names.				
	1. (-3,4), (-4,5)				
	2. (6,-3), (-1,-2)	Now find the distance between			
		the two points named!!			
	3. (8,-4), (-3,-4)				
	4. (-6,-2), (-6,9)				

Notes	Chapter 13: Coordinate Geometry Unit 1: Geometry and Algebra Section 3: Parallel and Perpendicular Lines	
<u>on your desk</u>	Theorem 13.3	
	Two non-vertical lines are parallel if and only if their slopes are equal.	
	What can you conclude about two vertical lines?	
	Theorem 13.4	
	Two non-vertical lines are perpendicular if and only the product of their	
	slope is -1.	
	What can you conclude about a horizontal line and a vertical line?	
		10

desk Exam	ple 1			
	lete the table below	w for $r s$ and $r\perp t$.		
	slope of r	slope of s	slope of t	
a	-1/2			
b			1/6	
с		1/5		
d		-4		
e			a	
f			3b/4	
Exam If r s Exam	and r is a horizont	al line, what is the	e slope of s?	

Notes	Chapter 13: Coordinate Geometry Unit 1: Geometry and Algebra Section 3: Parallel and Perpendicular Lines	
<u>on your desk</u>	Example 4	
	Use slopes to show that a quadrilateral with vertices $A(-2,7)$, $B(3,7)$, C	
	(6,11), and D(1,11) is a parallelogram.	
	Example 5	
	Plot points A(4,0), B(0,-8), and C(-16,0). Classify the triangle ABC.	
		12
	1	

Notes	Chapter 13: Coordinate Geometry Unit 2: Lines and Coordinate Proofs Section 6: Graphing Linear Equations
<u>on your desk</u>	Theorem 13.6 <i>Standard Form (otherwise known as General Form)</i> The graph of any equation that can be written in the form
	Ax+By=C
	where A and B are not both zero, is a line.

Notes	Chapter 13: Coordinate Geometry Unit 2: Lines and Coordinate Proofs Section 6: Graphing Linear Equations
<u>on your desk</u>	Theorem 13.7 Slope-Intercept Form
	A line with the equation y=mx+b has slope m and y-intercept b.
	14

Notes	Chapter 13: Coordinate Geometry Unit 2: Lines and Coordinate Proofs Section 6: Graphing Linear Equations	
<u>on your desk</u>	Example 4	
	Use slopes to show that a quadrilateral with vertices A(-2,7), B(3,7), C	
	(6,11), and D(1,11) is a parallelogram.	
	Example 5	
	Plot points A(4,0), B(0,-8), and C(-16,0). Classify the triangle ABC.	
		1