\qquad
\qquad
\qquad

Qtr 3 Practice

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. What is the image of $P(11,-4)$ using the translation $(x, y) \rightarrow(x-17, y+2)$?
a. $\quad P^{\prime}(-6,-2)$
b. $\quad P^{\prime}(6,2)$
c. $\quad P^{\prime}(-11,4)$
d. $P^{\prime}(-4,11)$
\qquad 2. Points $F(2,5), G(4,4)$, and $H(-1,-2)$ are the vertices of $\Delta F G H$. Find the vertices of $\Delta F^{\prime} G^{\prime} H^{\prime}$ by using the vector $\langle-3,-2\rangle$.
a. $\quad F^{\prime}(-6,-10), G^{\prime}(-12,-8), H^{\prime}(3,4)$
b. $\quad F^{\prime}(5,7), G^{\prime}(7,6), H^{\prime}(2,0)$
c. $F^{\prime}(-1,3), G^{\prime}(1,2), H^{\prime}(-4,-4)$
d. $F^{\prime}(0,2), G^{\prime}(2,1), H^{\prime}(-3,-5)$
-_- 3. Add $\left[\begin{array}{ccc}4 & -2 & 9 \\ -3 & 7 & 0 \\ 1 & 4 & 5\end{array}\right]+\left[\begin{array}{ccc}0 & 3 & -4 \\ 6 & 1 & 8 \\ -2 & 1 & 5\end{array}\right]$
a. $\left[\begin{array}{ccc}4 & 1 & 5 \\ 3 & 8 & 8 \\ -1 & 5 & 10\end{array}\right]$
b. $\left[\begin{array}{ccc}4 & 0 & -3 \\ 0 & 8 & 1 \\ -7 & 5 & 6\end{array}\right]$
c. $\left[\begin{array}{ccc}4 & -5 & 13 \\ -9 & 6 & -8 \\ 3 & 3 & 10\end{array}\right]$
d. $\left[\begin{array}{ccc}4 & 5 & 13 \\ 9 & 8 & 8 \\ 3 & 5 & 10\end{array}\right]$
-_-_ Multiply $\left[\begin{array}{c}6 \\ -1\end{array}\right]\left[\begin{array}{ll}-3 & 2\end{array}\right]$.
a. $\left[\begin{array}{cc}-18 & 12 \\ 3 & -2\end{array}\right]$
b. $\left[\begin{array}{cc}3 & 8 \\ -4 & 1\end{array}\right]$
c. $\left[\begin{array}{c}-6 \\ 1\end{array}\right]$
d. $[-20]$
\qquad 5. Which statement is false?
a. If (a, b) is reflected in the x-axis, its image is the point $(a,-b)$.
c. If (a, b) is reflected in the $y=x$, its image is the point (b, a).
b. If (a, b) is reflected in the y-axis, its image is the point $(-a, b)$.
d. If (a, b) is reflected in the $y=-x$, its image is the point $(-a,-b)$.
6. The vertices of $\triangle P Q R$ are $P(3,-1), Q(-2,7)$, and $R(6,5)$. Find the reflection matrix of $\Delta P^{\prime} Q^{\prime} R^{\prime}$ in the line $y=x$.
a. $\left[\begin{array}{ccc}1 & -7 & -5 \\ -3 & 2 & -6\end{array}\right]$
b. $\left[\begin{array}{ccc}-1 & 7 & 5 \\ 3 & -2 & 6\end{array}\right]$
c. $\left[\begin{array}{ccc}-3 & 2 & -6 \\ -1 & 7 & 5\end{array}\right]$
d. $\left[\begin{array}{ccc}3 & -2 & 6 \\ 1 & -7 & -5\end{array}\right]$
\qquad 7. Which statement describes the image?

a. Reflection in the line $y=x$
c. Rotation of 180° about the origin
b. Rotation of 180° about point $(-1,1)$
d. Translation right two units, down 2 units
\qquad 8. Which of the following could make a regular tessellation?
a.

c.

d.

\qquad 9. Which figure has rotational symmetry?
a.

b.

c.

d.

10. The vertices of quadrilateral $E F G H$ are $E(-2,-1), F(1,2), G(6,0)$, and $H(2,-2)$. Find the scale factor if an image of $E F G H$ has vertices $E^{\prime}\left(-3,-\frac{3}{2}\right), F^{\prime}\left(\frac{3}{2}, 3\right), G^{\prime}(9,0)$, and $H^{\prime}(3,-3)$.
a. $\frac{2}{3}$
b. $-\frac{3}{2}$
c. $-\frac{2}{3}$
d. $\frac{3}{2}$
\qquad 11. Find radius x of $\odot A$.

a. 5
b. 3
c. 4
d. 6
___ 12. Which term best describes $\overline{X Y}$?

a. tangent
c. chord
b. secant
d. diameter
13. Find $m \overparen{F G H}$.

a. 183°
b. 95°
c. 182°
d. 92°
14. Which pair of arcs is congruent?

a. $\overparen{A B} \cong \overparen{C D}$
b. $\overparen{A E} \cong \overparen{P R}$
c. $\overparen{B E} \cong \overparen{Q R}$
d. $\overparen{C D} \cong \overparen{P Q Q}$
15. If $m \overparen{K M}=112^{\circ}$, find $m \overparen{L M}$.

a. 100°
b. 124°
c. 112°
d. 236°
\qquad 16. In the same circle, or in congruent circles, two chords are congruent if and only if \qquad ?
a. they are equidistant from the center
c. their endpoints form two pairs of congruent arcs
b. they are parallel
d. the same diameter perpendicularly bisects both chords
17. Find $m \overparen{A E}$ and $m \overparen{C D}$.

a. $80^{\circ} ; 80^{\circ}$
b. $40^{\circ} ; 80^{\circ}$
c. $100^{\circ} ; 80^{\circ}$
d. $100^{\circ} ; 100^{\circ}$
\qquad 18. Which statement is not necessarily true of $\odot W$?

a. $m \angle X Y Z=90^{\circ}$
b. $\overline{W Z} \cong \overline{W X}$
c. $\overline{X Y} \cong \overline{Y Z}$
d. $m \overparen{X Y Z}=180^{\circ}$
19. Find x and y.

a. $42 ; 10$
b. $35 ; 17$
c. $\frac{17}{2} ; \frac{35}{2}$
d. $21 ; 5$
20. Find $m \overparen{P Q R}$.

a. 285°
b. 105°
c. 210°
d. 185°
21. Find $m \overparen{K M}$.

a. 70°
b. 20°
c. 110°
d. 60°
22. Find $X Y$ and $W Z$.

a. $14 ; 10$
b. $12 ; 10$
c. $\quad 19 \frac{1}{3} ; 19 \frac{1}{3}$
d. $8 ; 12$
23. Find $R S$.

a. 10
b. 8
c. 12
d. 13
24. Write the standard equation of the circle with center P.

a. $\quad(x-2)^{2}-\left(y+\frac{1}{2}\right)=49$
b. $\left(x-\frac{1}{2}\right)^{2}+(y+2)^{2}=\frac{49}{4}$
c. $\left(x+\frac{1}{2}\right)^{2}+(y-2)=49$
d. $(x+2)^{2}-\left(y-\frac{1}{2}\right)=\frac{49}{4}$
25. Find the diameter of a ball that rolls 100 feet after 60 revolutions. Round to the nearest hundredth.
a. $\quad 0.53 \mathrm{ft}$
b. 0.27 ft
c. $\quad 5.24 \mathrm{ft}$
d. 2.62 ft
26. Find the length of $\overparen{P Q}$ to the nearest hundredth.

a. 2.44 in .
b. 7.68 in.
c. $\quad 15.35 \mathrm{in}$.
d. 3.84 in .
\qquad 27. Find the circumference of $\odot K$.

a. $\quad 100 \mathrm{~cm}$
b. $\quad 94.5 \mathrm{~cm}$
c. $\quad 117.2 \mathrm{~cm}$
d. 138 cm
28. Find the area of the figure, rounded to the nearest hundredth.

a. $\quad 130.48$ in. 2
b. 212.48 in. 2
c. $\quad 324.53$ in. ${ }^{2}$
d. 280.96 in. ${ }^{2}$
29. The apothem of a regular polygon inscribed in a circle is the \qquad .
a. distance from the center to any side of the polygon
c. arc length intercepted by each side of the polygon
b. center of the polygon
d. central angle of the polygon
30. Find the side length of a 15 -sided regular polygon with apothem $a=6$ inches and area $A=282$ square inches.
a. $\quad 18 \frac{4}{5} \mathrm{in}$.
b. 94 in.
c. $6 \frac{4}{15}$ in.
d. $\quad 12 \frac{8}{15} \mathrm{in}$.
31. Which is not true about the probability of an event?
a. It can be expressed as a fraction,
c. The probability of event A can be written as $P(A)$.
b. It is the measure of the likelihood that
d. It is a number x such that $0<x<1$. an event will occur.
32. Find the probability that a randomly chosen point in the circle also lies in the triangle.

a. 28%
b. 41%
c. 56%
d. 45%
33. Which figure is not a polyhedron?
a.

c.
b.

d.
34. Which equation represents Euler's Theorem?
a. $\quad F+V=E+2$
b. $\quad F+E=V+2$
c. $E+V=F+2$
d. $\quad F+V=E-2$
\qquad 35. A polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex is a ____? \qquad
a. prism
c. pyramid
b. cone
d. dodecahedron
36. Find the volume of a 6 -inch tall glass with a 3 -inch diameter.
a. $42.41 \mathrm{in}^{3}{ }^{3}$
b. $\quad 169.56$ in. 3
c. 54 in. ${ }^{3}$
d. 56.52 in. ${ }^{3}$
37. Find the surface area of a globe with a 24 -inch diameter.
a. $\quad 1809.56$ in. ${ }^{2}$
b. 7234.56 in. ${ }^{2}$
c. $\quad 904.32$ in. ${ }^{2}$
d. 3627.28 in. 2
38. Which prism is similar to a prism with a length of 5 inches, width of 2 inches, and a height of $2 \frac{1}{2}$ inches?
a. $\quad l=4$ in., $w=1$ in., $h=1 \frac{1}{2}$ in.
b. $\quad l=10$ in., $w=7$ in., $h=7 \frac{1}{2}$ in.
c. $\quad l=10$ in., $w=4$ in., $h=4 \frac{1}{2}$ in.
d. $\quad l=2 \mathrm{in} ., w=\frac{4}{5} \mathrm{in} ., h=1 \mathrm{in}$.
39. How many possible outcomes are there when you roll two number cubes and toss one coin?
a. 13
b. 36
c. 72
d. 144
40. The probability of an event occuring is $7: 10$. What are the odds against the event?
a. $3: 10$
b. $10: 3$
c. $3: 17$
d. $10: 7$
41. According to a meteorologist, there is a 60% chance of thunderstorms today. What are the odds that it will not storm?
a. $3: 5$
c. $2: 5$
b. $2: 3$
d. 1: 25
42. How many ways can you arrange all the letters in the word MATH?
a. 4
b. 6
c. 12
d. 24
43. The judges of the science fair will be awarding ribbons for first, second, and third place, plus a ribbon for honorable mention out of 15 entries. Which expression gives the number of ways the judges can award first place, second place, third place, and honorable mention?
a. $\frac{4!}{11!}$
b. $\frac{15!}{11!}$
c. $\frac{11!}{15!}$
d. $\frac{11!}{4!}$
44. You need to go to the library, grocery store, and pharmacy. In how many orders can you visit these places?
a. 3
b. 6
c. 9
d. 12
45. What is the value of ${ }_{8} P_{5}$?
a. 56
b. 120
c. 6720
d. 40,320
46. What is the value of ${ }_{6} C_{3}$?
a. 20
b. 120
c. 240
d. 1200
47. How many combinations of 3 letters can you make from the list $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E ?
a. 10
b. 20
c. 30
d. 60
48. You are ordering a 3-topping pizza from a pizzeria. You have 10 topping choices. How many different pizzas are possible?
a. 60
b. 120
c. 720
d. 5040
49. You roll a number cube. What is the probability that you will roll an even number or a number greater than 4 ?
a. $0.1 \overline{6}$
b. 0.5
c. $0 . \overline{6}$
d. $0.8 \overline{3}$
50. You flip a coin and roll a number cube. What is the probability that the coin shows tails and the number cube shows a 3 ?
a. $\frac{2}{3}$
b. $\frac{1}{2}$
c. $\frac{1}{6}$
d. $\frac{1}{12}$
\qquad 51. A jar contains 6 red marbles, 5 blue marbles, and 9 green marbles. What is the probability of randomly choosing a blue marble and then another blue marble if the first marble is not replaced?
a. $\frac{1}{20}$
b. $\frac{1}{19}$
c. $\frac{1}{18}$
d. $\frac{1}{16}$
52. The distribution of the number of pets per household is shown in the table below. What is the probability that the number of pets in a randomly chosen household is at least 2 ?

Pets	0	1	2	$3+$
Households	50	100	75	75

a. 0.25
b. 0.75
c. 0.5
d. $\quad 1.00$
53. What is the probability of $P(\operatorname{Aand} B)$ given that $P(A)=0.20, P(B)=0.45$, and $P(A$ or $B)=0.58$?
a. 0.07
b. 0.93
c. 0.97
d. 1.00
\qquad 54. If $P(A)=0.1997$, what is $P(\bar{A})$?
a. 0.0003
b. 0.8003
c. 0.9003
d. 1.1997
\qquad 55. You toss a coin and roll a six-sided die simultaneously. What is the probability of tossing a head and rolling a 5 ?
a. $\frac{1}{12}$
b. $\frac{1}{6}$
c. $\frac{2}{3}$
d. $\frac{5}{6}$
56. What is the probability that you randomly draw four aces consecutively from a standard deck of 52 cards without replacement?
a. $\frac{1}{7,311,616}$
b. $\frac{3}{913,952}$
c. $\frac{1}{270,725}$
d. $\frac{1}{13}$

Qtr 3 Practice
Answer Section

MULTIPLE CHOICE

1. ANS: A
NAT: NT.CCSS.MTH.10.9-12.G.CO.4
NOP: Standardized Test, Chapter 9

