- 1. (No Calc) The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 2$, $y(t) = \frac{2}{3}t^3$.
 - (a) Find the magnitude of the velocity vector at t = 2.

(b) Set up an integral expression to find the total distance traveled by the particle from t = 0 to t = 4.

(c) Find $\frac{dy}{dx}$ as a function of x.

(d) At what time t is the particle on the y-axis? Find the acceleration vector at this time.

2.	(No Calc) An object moving along a curve in the xy -plane has position $(x(t), y(t))$ at time t with the velocity vector $v(t) = \langle (t+1)^{-1}, 2t \rangle$. At time $t = 1$, the object is at $(\ln 2, 4)$.
	(a) Find the position vector.
	(b) What is the speed of the particle when $t=1.$
	(c) Write an equation for the line tangent to the curve when $t=1.$
	(d) At what time $t \ge 0$ does the line tangent to the particle at $(x(t), y(t))$ have a slope of 12?
	(e) Write an expression that represents how far has the particle travelled from time $t = 0$ to $t = 1$.

3. (Calc OK) A particle moving along a curve in the xy-plane has position (x(t),y(t)), with $x(t)=2t+3\sin t$ and $y(t)=t^2+2\cos t$, where $0\leq t\leq 10$. Find the velocity vector at the time when the particle's vertical position is y=7.

4. (Calc OK) A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = 1 + \sin(t^3)$. The derivative $\frac{dy}{dt}$ is not explicitly given. For any time t, $t \ge 0$, the line tangent to the curve at (x(t), y(t)) has a slope of t + 3. Find the acceleration vector of the object at time t = 2.

- 5. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = \cos(e^t)$ and $\frac{dy}{dt} = \sin(e^t)$ for $0 \le t \le 2$. At time t = 1, the object is at the point (3, 2).
 - (a) Find the equation of the tangent line to the curve at the point where t = 1.

(b) Find the speed of the object at t = 1.

(c) Find the total distance traveled by the object over the time interval $0 \le t \le 2$.

(d) Find the position of the object at time t=2.

- 6. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = \sin(t^3 t)$ and $\frac{dy}{dt} = \cos(t^3 t)$. At time t = 3, the particle is at the point (1, 4).
 - (a) Find the acceleration vector for the particle at t = 3.

(b) Find the equation of the tangent line to the curve at the point where t = 3.

(c) Find the magnitude of the velocity vector at t = 3.

(d) Find the position of the particle at time t = 2.

- 7. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dy}{dt} = 2 + \sin(e^t)$. The derivative $\frac{dx}{dt}$ is not explicitly given. At t = 3, the object is at the point (4,5).
 - (a) Find the y-coordinate of the position at time t = 1.

(b) At time t = 3, the value of $\frac{dy}{dx}$ is -1.8. Find the value of $\frac{dx}{dt}$ when t = 3.

(c) Find the speed of the object at time t = 3.