
BC Calc-Lagrange Remainder Name: Block: Seat:

Let us define PN (x) the N th degree Taylor polynomial around c :

PN (x) = f(c) + f ′(c)(x− c) +
f ′′(c)(x− c)2

2!
+ · · ·+ f (n)(c)(x− c)n

n!
+ . . .

If we define the Remainder function RN (x):

RN (x) = f(x)− PN (x)

then a version of the Taylor Remainder Theorem is the Lagrange Remainder:

|RN (x)| ≤
∣∣∣∣M(x− c)N+1

(N + 1)!

∣∣∣∣
Proof

Before the proof, let us consider the following lemma:∣∣∣∣∫ f(x)dx

∣∣∣∣ ≤ ∫ |f(x)| dx

To convince yourself that this is true, consider how if f is both positive and negative, the right term areas
will accumulate and the left term areas cancel.

Now let us consider RN (x) = f(x)− PN (x). Because it is a Taylor series around c we know

RN (c) = f(c)− PN (c) = 0

R′N (c) = f ′(c)− P ′N (c) = 0

R′′N (c) = f ′′(c)− P ′′′N (c) = 0

R′′′N (c) = f ′′′(c)− P ′′′N (c) = 0

. . .

R
(n)
N (c) = f (n)(c)− P

(n)
N (c) = 0

. . .

R
(N)
N (c) = f (N)(c)− P

(N)
N (c) = 0

Going beyond the N th derivative we have

R
(N+1)
N (c) = f (N+1)(c)− P

(N+1)
N (c)

but because we are taking a derivative beyond the degree of the Taylor polynomial, P
(N+1)
N (c) = 0, we have

R
(N+1)
N (c) = f (N+1)(c)
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We want to show that we can bound this by some number M such that∣∣∣R(N+1)
N (c)

∣∣∣ =
∣∣∣f (N+1)(c)

∣∣∣ ≤M

Let consider f (n+1)(x) on the interval [c, b]. If f (n+1)(c) or f (n+1)(b) doesn’t already equal M , it there will
be a maximum value M by Rolle’s theorem if continuous on [c, b] and differentiable on (c, b).

-

-

6 6f (n)(x) f (n+1)

c b

c b

Since ∣∣∣f (n+1)(x)
∣∣∣ ≤M

where x ∈ [c, b], we have

R
(n+1)
N (x) ≤M

Next we continue to integrate until we get to |RN (x)|:∫ ∣∣∣R(n+1)
N (x)

∣∣∣ dx ≤ ∫ Mdx

by the lemma ∣∣∣∣∫ R
(n+1)
N (x)dx

∣∣∣∣ ≤ ∫ ∣∣∣R(n+1)
N (x)

∣∣∣ dx ≤ ∫ Mdx

so we can write ∣∣∣∣∫ R
(n+1)
N (x)dx

∣∣∣∣ ≤ ∫ Mdx∣∣∣R(n)
N (x)

∣∣∣ ≤Mx + K

where K is a constant, which we wish to minimize. Recall
∣∣∣R(c)

N

∣∣∣ can be 0. so 0 < Mc+K suggests −Mc < K

so that ∣∣∣R(n)
N (x)

∣∣∣ ≤Mx−Mc = M(x− c)

As we continue to integrate ∫ ∣∣∣R(n)
N (x)

∣∣∣ dx ≤ ∫ M(x− c)dx∣∣∣R(n−1)
N (x)

∣∣∣ ≤ M(x− c)2

2
where the constant K can be minimized to 0 since 0 ≤ K. Next we integrate again.∫ ∣∣∣R(n−1)

N (x)
∣∣∣ dx ≤ ∫ M(x− c)2

2
dx∣∣∣R(n−2)

N (x)
∣∣∣ ≤ M(x− c)3

3 · 2
and again ∫ ∣∣∣R(n−2)

N (x)
∣∣∣ dx ≤ ∫ M(x− c)3

3 · 2
dx∣∣∣R(n−3)

N (x)
∣∣∣ ≤ M(x− c)4

4 · 3 · 2
arriving eventually at the remainder function RN (x) when for some w, n− w = 0 (so n = N), we get to :

|RN (x)| ≤ M(x− c)N+1

(N + 1)!

St. Francis High School AP Calc BC



Page 3 of 7 2017

Use the Remainder Theorem to bound the error involved in using the specific Taylor polynomial, centered
at 0, to approximate f(x) at the given value.

1. P5(x) for f(x) = cosx at x = 0.2

2. P4(x) for f(x) = ex at x = 0.8
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Use the Remainder Theorem to bound the error involved in using the specific Taylor polynomial, at the
given center, to approximate f(x) at the given value.

3. P2(x) for f(x) = x5/2 centered at 1. Approximate f(1.7)

4. P3(x) for f(x) =
1

1− x
centered at 2. Approximate f(2.4)
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Determine the degree of the Taylor polynomial, centered at 0, that would be required to approximate
the function at the given point to within the stated accuracy.

5. f(x) = x ln(1 + x), at x = −0.2, within 1/1000.
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6. f(x) = sinx, at x = 1, within 1/1000.

7. f(x) = e2x, at x = 0.5, within 1/100.
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Answers

1.

2. Since 0 < z < 1, max f (5)(z) = e

|R4(0.8)| ≤
∣∣∣∣ (0.8)5

5!
e

∣∣∣∣ = .00742272 so e(0.8) is about 2.2224± .00742272

3. Since 1 < z < 1.7, max f (3)(z) =
15

8
|R2(1.7)| ≤ 0.1071875 or 3.66875 < f(1.7) < 3.7759375

4. Since 2 < z < 2.4, max f (4)(z) = 24
|R3(2.4)| ≤ 0.0256 or −0.7216 < f(2.4) < −0.696

5. f ′(x) = x
x+1 + ln(x + 1)

f ′′(x) = 1
(x+1)2 + 1

x+1 = x+2
(x+1)2

f ′′′(x) = − 2
(x+1)3 −

1
(x+1)2 = (−1)

(
x+3

(x+1)3

)
f (4)(x) = 6

(x+1)4 + 2
(x+1)3 = 3!

(x+1)4 + 2!
(x+1)3

f (5)(x) = − 24
(x+1)5 −

6
(x+1)4 = (−1)

(
4!

(x+1)5 + 3!
(x+1)4

)
f (n)(x) = (−1)n

(
(n−1)!
(x+1)n + (n−2)!

(x+1)n−1

)
f (n+1)(x) = (−1)n+1

(
n!

(x+1)n+1 + (n−1)!
(x+1)n

)
So we need to solve for n so that f (n+1) term is less than 1

1000 :∣∣∣∣ (−0.2)n+1

(n + 1)!
·
(

n!

(z + 1)n+1
+

(n− 1)!

(z + 1)n

)∣∣∣∣ ≤ 1

1000∣∣∣∣ (−0.2)n+1

(n + 1)!
· (n! + (n− 1)!)

∣∣∣∣ ≤ 1

1000
(−0.2)n+1

n + 1
+

(−0.2)n+1

(n + 1)n
≤ 1

1000

n(−0.2)n+1 + (−0.2)n+1

(n + 1)n
≤ 1

1000

(−0.2)n+1(n + 1)

(n + 1)n
≤ 1

1000

n

(0.2)n+1
≥ 1000

n ≥ 1000 ∗ (0.2)n+1

We graph or use numeric methods to see n ≥ 3 (To solve for n we need to use the Lambert W function
which is the inverse function of f(W ) = WeW ).

6. Max is 1, so n must be bigger than 5 since
1

6!
=

1

720
but if n = 6,

1

7!
=

1

5040

7.
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