Find the radius (and interval) of convergence for

1. Recall the geometric series

$$\sum_{n=0}^\infty ar^n=\frac{a}{1-r}, \ |r|<1$$

Let a = 1 and r = x

(a) Write the sum of the series:

(b) How would this be related to
$$f(x) = \frac{1}{1-x}$$
?

(c) What is the interval of convergence?

(d) Adapt the series so it is centered at -1

2. (a) Find a power Series for $f(x) = \frac{4}{x+2}$ Hint: write this in the form of $\frac{a}{1-r}$

3. (a) Find a power series for $f(x) = \frac{1}{x}$ centered at 1

Hint: write this in the form of $\frac{a}{1-r}$

4. (a) Find a power series for $f(x) = \frac{3x-1}{x^2-1}$ centered at 0

Hint: Use partial fraction decomposition, then use the geometric series trick with both

5. (a) Find a power series for $f(x) = \ln x$ centered at 1

Hint: Use integration! Didn't we do a series for $\frac{1}{x}$ before?

$$\ln x = \int \frac{1}{x} dx + C$$

- 6. Find a power series for $f(x) = \arctan x$ centered at 0
 - (a) Recall

$$\frac{d}{dy}\left(\arctan y\right) = \frac{1}{1+y}$$

substitute $y = x^2$. Doesn't

_

$$f(x^2) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}?$$

Now integrate to find the series for $\arctan x$

(b) It can be shown that this series for $\arctan x$ converges for $x = \pm 1$. What is the series approximation for $\arctan 1$. Use your calc's $\operatorname{sum}(\operatorname{seq}())$ function to add a 100 or so terms. Is it close to $\frac{\pi}{4}$?

Answers:
2a.
$$2(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8} + ...)$$

2b. Converges on the open interval $(-2, 2)$
3a. $1 - (x - 1)^1 + (x - 1)^2 - (x - 1)^3 + ...$
4a. $f(x) = \frac{3x - 1}{x^2 - 1} = \frac{2}{x + 1} + \frac{1}{x - 1}$ so $1 - 3x + x^2 - 3x^3 + x^4 - 3x^5 + ...$
4b. Converges on the open interval $(0, 2)$
4b. Converges on the open interval $(-1, 1)$
4b. Converges on the open interval $(-1, 1)$
5a. To find C, let $x = 1$, so $C = 0$. $f(x) = \ln x = \frac{2}{x + 1} + \frac{1}{x - 1}$ so $\frac{(x - 1)^1}{1} - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \frac{(x - 1)^4}{4} + ...$
5b. Converges on the open interval $(0, 2]$ — see how integration can change the convergence at the end points?
6a. $f(x) = \arctan x = \frac{2}{x + 1} + \frac{1}{x - 1}$ so $x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ...$
6b. Converges on the open interval $(-1, 1)$