GRIDWORLD
OVERVIEW

CHRIS THIEL, OFMCA®P

SFHS APCS 20132

About one fourth of the AP exam will be on
Gridworla (5 to 10 multiple-choice questions, one
free response question)

You must be familiar with the Bug, BoxBug, Critter,
and chameleonCritter classes
(bncluding their implementation)

Kunow the documentation for location, Actor, Rock ana
Flower classes, as well as the Grid interface

Yow'll have the uick Reference: containimg a list of
methods for these classes ana the source code for
BuUg, BoxBug, Critter and ChameleonCritter classes

TEST

VY A TR SR ESTABIEEY

[0 THE IMPLEMENTATION OF THE CLASS IS TESTABLE.

YOWU NEEP TO KNOW ALL THE MEMBERS OF THE CLASS
AND ITS FUNCTIONAULITY.

YOWU NEEP TO KNOW HOW TO CALL ANY METHOD OF THIS
CLASS FROM A CLIENT PROGRAM SEGMENT.

YOU UNPERSTAND THE IMPLEMENTATION COPE OF ANY
METHODS OF THE CLASS.

YOU ARE EXPECTED TO ALTER THE PROGRAM CODE OF THE
CLASS TO ALTER ITS BEHAVIOR

YOU NEED TO KNOW ALL THE MEMBERS OF THE CLASS
AND TS FUNCTIONALITY (KNOW THE API!)

I:A ot N <<interface>>
Grid
Location T

<<abstract>>
AbstractGrid

| Flower | | Rock |I Bug | I Critter | /\

I BoxBug ||Ch,m,,,o,,c,,m,| | BoundedGrid I IunboundedGﬂd |

THE CLASSES

[0 po NOTHING

[SEEAPPENDIX E

[0 APPENDIX B4

ROCKS

public class Rock extends Actor
{

private static final Color DEFAULT_COLOR = Color.BLACK;

/o
* Constructs a black rock.
*/

public Rock()

setColor (DEFAULT_COLOR) ;

/¥x%

* Constructs a rock of a given color.
* @param rockColor the color of this rock

*/
public Rock(Color rockColor)

setColor(rockColor);

Vass

* Overrides the <codeact</code> method in the <code>Actor</code> class
* to do nothing.

*/
public void act()
&

i

! L

RLEOVMVERS

[l DPARKEN IN COLOR- SEE APPENDIX B4
CODE NOT IN APPENDIX (BLACK BOX)

public void act()
1

Color c = getColor();

int red = (int) (c.getRed() * (1 - DARKENING_FACTOR));
int green = (int) (c.getGreen() * (1 - DARKENING_FACTOR));
int blue = (int) (c.getBlue() * (1 - DARKENING_FACTOR));

setColor(new Color(red, green, blue));

GUI Summary

Mouse Action

Keyboard Shortcut

Result

Click on an empty
location

Select empty location with
cursor keys and press the
Enter key

Shows the constructor menu

Click on an occupied
location

Select occupied location
with cursor keys and press
the Enter key

Shows the method menu

Select the Location ->
Delete menu item

Press the Delete key

Removes the occupant in the
currently selected location from
the grid

Click on the Step button

Calls act on each actor

Click on the Run button

Starts run mode (in run mode, the
action of the Step button is carried
out repeatedly)

Adjust the Slow/Fast
slider

Click on the Stop button|

‘Stops run mode

Changes speed of run mode

Select the Location ->
Zoom in/Zoom out
menu item

Adjust the scroll bars
next to grid

Press the Ctrl+PgUp /
Ctrl+PgDn keys

Move the location with the
cursor keys

Zooms grid display in or out

Scrolls to other parts of the grid (if]

the grid is too large to fit inside
the window)

Select the World -> Set
grid menu item

Changes between bounded and
unbounded grids

Select the World ->
Quit menu item

Press the Ctrl+Q keys

Quits GridWorld

aul

BUG

[0 TRIES TO GO FORWARD, LEAVES A FLOWER IN OLD

LOCATION, EATS (REMOVES) FLOWER IN NEW LOCATION

O IFBLOCKED TURN RIGHTS 45° (NON-FLOWERS BLOCK.)

COPE IN APPENDIX ON PAGES C1-C2

[:XeXs) GridWorld

World Location Help

Click on a grid location to construct or manipulate an actor.

%

Ll

Cos
o0

Run Stop | Slow == y== Fast

B@EvG

MOVES LIKE BUG, BUT TURNS 90°,

MAKES A BOX AFTER A GIVEN NUMBER OF TURNS TO
LEAVE BEHIND A SRUARE (F IT CAN

IFBLOCKED, TURNS TWICE TO RIGHT AND STARTS AGAIN

COPE IN APPENDIX ON PAGE C=3

PAGE C3: BOX BUG

import info.gridworld.actor.Bug;

4k

* A <code>BoxBug</code> traces out a square "box" of a given size.

* The implementation of this class is testable on the AP CS A and AB exams.
*/

public class BoxBug extends Bug

{

private int steps;
private int sideLength;

4
* Constructs a box bug that traces a square of a given side length
* @param length the side length

*/

public BoxBug(int length)

{

steps = 0;
sideLength = length;

Vel
* Moves to the next location of the square.
*
public void act()
if (steps < sidelength && canMove())
{

move();
steps++;

else
turn();

turn();
steps = 0;

EiFEeEEEr e m

CIRGTTHER

GETS A LIST OF OF ADJACENT LOCATIONS

EATS EACH FLOWER OR BUG

MOVES TO RANDOM ADJACENT

IF NONE EMPTY T POESNT MOVE (?O0R TURN? CHECK!)

CODE IN APPENDIX ON PAGES C4-Co

Jan
* Acritter isanactor that moves through its world, processing * other actors in
some way and then moving to a new location.

* Define your own critters by extending this class and overriding any methods of this
class except foract.. * When you override these methods, be sure to preserve the
postconditions.

* The implementation of this class is testable on the AP CS A and AB Exams.
*/

public class Critter extends Actor

/e

* Acritter acts by getting a list of other actors, processing that list, getting locations
tomove to, * selecting one of them, and moving to the selected location.
*/

public void act()

if (getGrid() == null)
eturn;

ArrayList<Actor> actors = getActors();

processActors (actors);

ArrayList<Location> moveLocs = getMoveLocations();

Location loc = selectMoveLocation(moveLocs);

makeMove (1oc) ;

}

e
* Gets the actors for processing. Implemented to return the actors that occupy
neighboring grid locations. * Override this method in subclasses to look elsewhere
for actors to process.

* Postcondition: The state of all actors is unchanged.

* @return alist of actors that ths critter wishes to process

*/

public ArraylList<Actor> getActors()

return getGrid().getNeighbors(getLocation());

Jex
* Processes the elements of actors. New actors may be added to empty locations. *
Implemented to “eat” (i.c.. remove) selected actors that are not rocks or criters.

* Override this method in subclasses to process actors in a different way.

* Postcondition: (1) The state of all actors in the grid other than this critter and the *
elements of actors s unchanged. (2) The location of this critter is unchanged. *
€param actors the actors to be processed

*/

public void processActors(ArrayList<Actor> actors)
for (Actor a : actors)

if (!(a instanceof Rock) & !(a instanceof Critter))
a.removeselfFromGrid();

1

Jex
* Gets a lst of possible locations for the next move. These locations must be valid in the
rid of this critter. * Tmplemented to return the empty neighboring locations. Override
this method in subclasses to look

* elsewhere for move locations.

* Postcondition: The state of all actors s unchanged

* ereturn alistof possible locations for the next move

*/

public i)

{
return getGrid() i ion());
}

Jex
* Selects the location for the next move. Implemented to randomly pick one of the
possible locations,

* orto retur the current location if 1ocs has size 0. Override this method in subclasses
that

* have another mechanism for selecting the next move location.

* Postcondition: (1) The returned location is an element of 1ocs , this critter’s current
location, or null. * (2) The state of all actors is unchanged.

* @param locs. the possible locations for the next move

* ereturn the location that was selected for the next move

*/

public Location ion(ArrayLi ion> locs)

int n = locs.size();

if (n == 0)

return getLocation();

int r = (int) (Math.random() * n);
return locs.get(r);

else
moveTo(loc);

if (loc == null)
} removeSelfFromGrid();

public void makeMove(Location loc)

a1l S S OINL R ETE X

[l QETsS A LIST OF OF ABJACENT NEIGHBORS

[0 SWITCHES ITS COLOR TO THE SAME AS A RANDOM
NEIGHBOR

[0 MOVES TO RANDOM ADJACENT AVAILABLE LOCATION,
BUT BEFORE IT DOES CHANGES ITS DIRECTION TO FACE
ITS NEW LOCATION

[0 copE IN APPENDIX ON Co

ChameleonCritter.java
import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Location;
import java.util.ArrayList;

Jxx

* AcChameleonCritter takes on the color of neighboring actors as it moves through the grid. *

The implementation of this
7

class is testable on the AP CS A and AB Exams.

public class ChameleonCritter extends Critter

{ /%

* Randomly selects a neighbor and changes this critter’s color to be the same as that neighbor’s. * If
there are no neighbors, no action is taken.

public void processActors(ArrayList<Actor> actors)

int r = (int) (Math.random() * n);
Actor other = actors.get(r);
setColor (other.getColor());

a3
{
int n = actors.size();
if (n 0)
return;
}
JE®

* Turns towards the new location as it moves. */

public void makeMove(Location loc)

{

setDirection(getLocation().getDirectionToward(loc));
super .makeMove (loc) ;

D)

static int in Location for relative angles static int in Location for absolute direction
AHEAD =0 NORTH =0
HALF_LEFT =-45 NORTH_EAST = 45
HALF_RIGHT = 45 EAST =90
LEFT =-90 SOUTH_EAST = 135
RIGHT =90 SOUTH = 180 — 7—
HALF_CIRCLE = 180 SOUTH_WEST =225 w 2 O
CIRCLE = 360 WEST = 270
NORTH_WEST = 325

using outside the class: Location . NORTH

@ @R @) N

sencapsulates row and columm

*has compass directions and angles

*Has methods for relationships between
sangles, compass direction and other Locations

*Use page BL

Actor)
T Grid
| | R =
AbstractGrid
3 A l Flower I I Rock | | Bug Critter |
change direction to
| BoxBug | |chnmtlooncrm.1| | BoundedGrid | I UnboundedGrid |
N Location k
setDirection(getDirection() + Location.RIGHT); static Int o Locaton for abeolute direction I CL L\ i for etative angies Froperes

NORTH=0 -col :int
AHEAD = 0
:2::’};5 L HALF_LEFT =-45 Constrtors
T HALF_RIGHT =45 Location()
Zgﬂ;:_Eﬁ.SOT e LEFT =-90 Location(row, col)
i = Location(Location
SOUTH_WEST = 225 RIGHT =90 ()

WEST =270 HALF_CIRCLE = 180 Methods

, ,
the current direction 2P ﬁ o NORTH_WEST = 325 S + getRew (1 Int

+ getCol () : int

+ getAdjacentLocation (Direction) : Location
+ getDirectionToward (Location) : Direction
+ equals(Location) : boolean

+ compareTo(Location) : int

+ toString () : String

EXAMPLE LOCATION

| [| | Method Summary 1 |
| Flower | | Rock | | Bug | | Critter | - | |
= s void[act () | Flower | l
Reverses the direction of this actor. |
ﬁ ﬁ I e prevseyion

Gets the color of this actor.

| BoxBug ||c,.a,.....°,.c,m,,| | BoundedGrid | |M I

int|getDirection()

Gets the current direction of this actor.
PRECONDITIONS . -
Grid<Actor>|getGrid() T N =1
Gets the grid in which this actor is located. e iscaien e

[Gick n 8 grd Iocation 1o Construct or manipuire an actor

1. ACTOR IN A GRID Location| getLocation()
2.NEWLOC IS VALID IN THAT GRID g Gets the location of this actor. [[[[[| Method Summary 1. override act () ok for bug

void|act () f 2. super.act () for default
Mov it ca Y

—

moveTo(Location newLocation)

Moves this actor to a new location.

@ il gridworid actor Rock jav 4 swt Color) boolean (

putSel £InGrid(Grid<Actor> gr, Location loc)
Puts this actor into a grid. Tests

Iy

1. NOT IN A GRID, [—
2. LOoC IS VALID

0id | removeSel £FromGrid () i
Removes this actor from its grid. void|move()

— —

/ void|setcolor(Color newColor) el ocx]%‘;eis(the bug Jorlirt pu
1. ACTOR IN A GRID Sets the color of this actor. E <

void|getpirection(int newbirection) |. void M(')l'ums the buz 45 de o the right withont
T — — Sets the current direction of this actor. its locaﬁoi e gh
Strind|toString()

Creates a string that describes this actor.

\

|
‘ swp | [mun][s | stow =0 pant

ACTOR -B3 _——— BUG-C1-2

When adding or removing actors, do not use the put and remove methods of the Grid
interface. Those methods do not update the location and grid instance variables of the
actor. That is a problem since most actors behave incorrectly if they do not know their location.
To ensure correct actor behavior, always use the putSelfInGrid and
removeSelfFromGrid methods of the Actor class.

To Make Different BUGS:

override the act () wethod

emoveTo (),
esetColor ()
esetDirection()
eputSelfInGrid() Lo

BUSG SUBCLASSES

Write a class ZBug to implement bugs that move in a “Z” pattern, starting in the
top left corner. After completing one “Z” pattern, a ZBug should stop moving
In any step, ifa ZBug can’t move and is still attempting to complete its “Z"
pattern, the ZBug does not move and should not turn to start a new
the length of the “Z" as a parameter in the constructor. The following image
attern of length 4. Hint: Notice thata ZBug needs to be facing
ginning its “Z" pattern.

shows a
cast befor

WordLocation Help

Learn the methods so you can make new sub classes

6 006 GridWorld
World Location Help

Mushroom Bug Runner

| 'Step'\ Run Stop Slow == = Fast

8006 Gridworld
World Location Help |

You can add more planes and missiles buy clicking on a grid location.

Step Run Slow e=={D)=== Fast

| BoxBug ||c,,,m°|”nc,m,,| I BoundedGrid I |Unbo|mdadGrIﬂ I

, ublic BoxBug(int length)
Adols two attributes } s s
steps = 0;
sideLength = length;

’ ublic void act()
overwrites one methoo |
%f (steps < sideLength && canMove())

move () ;
steps++;

else
turn() ;

turn() ;
steps = 0;

BOXBog ™ C3

getActors ||The state of all actors is unchanged.
(1) The state of all actors in the grid other than this
processActors critter and the elements of actors is unchanged. (2) The!

location of this critter is unchanged.

getMoveLocations |The state of all actors is unchanged.

(1) The returned location is an element of locs, this
selectMoveLocation||critter's current location, or null. (2) The state of all

actors is unchanged.

(1) getLocation() == loc.(2) The state of all actors
makeMove other than those at the old and new locations is

unchanged.

CRITTER POSTCONDITIONS

Actor

1. DO NOT CHANGE STATE
OF other ACTORS!

BoxBug ChameleonCritter I BoundedGrid I I UnboundedGrid I
{ —————
] Vethod Summary a!
|
1 DO NOT Toue! voldlast() f
1 ueH A critter acts by getting a lis! thgf a s
CRITTER'S act () """"‘ﬁt} processing that list, getting locaiélis to plovedo,
METHODII! selecting one of them, and ing tgdhe ted
location.
ArrayList<Actor>|getActors ()
Gets the actors for sing.
|
| 1.CAN ONLY CHANGE THE STATE 101> | getMoveLocations () | ! g‘
‘ OF ACTORS (N OLD/NEW LOCATION Gets a list of possible locatighs for the nextfnove.
| 3. if (loc==null) removeSelfFromGrid() d

| 2.USE moveTo(loc) TO UPDATE STATE [0 YmakeMove (Location loc))
| Moves this critter to thegtiven location 1odf o1
removes this critter from i d if 1oc is null.

voidl (ArrayLi® actors);
Processes the elements of actors.

ation|selectMoveLocation(ArrayList<Location> locs)
canh Selects the locati the next
1. RETURN: ELEMENT OF (LOCS)
1. OK CHANGE STATE OF THIS CRITTER ONLY! 2. OR CURRENT LOCATION

2.ACTORS PARAM UNCHANGED 3. OR NULL
3.LOC OF THLS CRITTER UNCHANGED
=TT T CRT O
—— —

| BoxBug ||cm,,,.|”ncm,l | BoundedGrid I |UnboundedGrI¢ |

public void processActors (ArrayList<Actor> actors)

O\/CVVLdCS int (n = actors.size();
if (n ==
return;
two int r = (int) (Math.random() * n);
VWCtl’lOdS Actor other = actors.get(r);

setColor (other.getColor()) ;

}
/**

* Turns towards the new location as it moves.
*

public void makeMove (Location loc)

setDirection(getLocation() .getDirectionToward(loc)) ;
super.makeMove (loc) ;

CHAMELEONCRITTER

Mol!npd B qrid . UnboundedGrid

Gets the neighboring occupants in all eight compass GITECtONS (NOTH,
northeast, east, southeast, south, southwest, west, and northwest).

Method Summary Setheighbors om an
getValidAdjacentLocations o(1) o)
E|get(Location loc) getEmptyAdjacentLocations o(1) o(1)
Returns the object at a given location in this gri¢ SO;SC:\IPHGMJlc-ntlocﬂicn! o(1) o(1)
toStr.
ArrayList<Location>|getEmptyAdjacentLocations(Location loc) gotﬂcczhdLocatwna 82:3 gé:;
Gets the valid empty locations adjacent to a givi get o(1) o(1)
p irections (north, north east, s put o(1) o(1)
northwest). remove o(1) o(1)

ArrayList<E>|getNeighbors(Location loc)

| int|getNumCols()
| Returns the number of columns in this grid.

int|getNumRows ()
Returns the number of rows in this grid.

ArrayList- ion>

Gets the valid occupied locations adjacent to a given location in all eight

tions(Location loc)

northwest).

(north, th east, south, th , west, and

ArrayList<Location>|getOccupiedLocations ()
Gets the locations in this grid that contain objects.

ArrayList<Location>|getValidAdjacentLocations(Location loc)
Gets the valid locations adjacent to a given location in all eight compass
(north, th east,

south, southwest, west, and northwest).

boolean|igvalid(Location loc)
Checks whether a location is valid in this grid.

ot

E|put(Location loc, E obj)
Puts an object at a given location in this grid.

It

remove(Location loc)
Removes the object at a given location from this grid.

S——— " GRID<E>- PAGE B2

=] =

Bug I I Critter I

e

Constructor Summary

AbstractGrid()

Method Summary

ArrayList<Location> i i (Location loc)
Gets the valid empty locations adjacent to a given location in all eight compass

directions (north, northeast, east, southeast, south, southwest, west, and northwest).

ArrayList<E>|getNeighbors(Location loc)
Gets the neighboring occupants in all eight compass directions (north, northeast,
east, southeast, south, southwest, west, and northwest).

ArrayList<Location> iedadj tLocations(Location loc)
Gets the valid occupied locations adjacent to a given location in all eight compass
directions (north, northeast, east, south, , west, and).

ArrayList<location>|getValidAdjacentLocations(Location loc)
Gets the valid locations adjacent to a given location in all eight compass directions
(north, northeast, east, southeast, south, southwest, west, and northwest).

String|tostring()
Creates a string that describes this grid.

INTERFACE AND ABSTRACT CLASSES

put

E put(Location loc,
E obj)

Puts an object at a given location in this grid.
Precondition: (1) loc is valid in this grid (2) obj is not null

Parameters:
1loc - the location at which to put the object
obj - the new object to be added
| Returns:
| the object previously at 1oc (or null if the location was previously unoccupied)

But usually from actors don't call put ...instead:
if (gr.isvalid(next))]
moveTo (next) ; =
else) w b'(c the
removeSelfFromGrid() ;
Flower flower = new Flower (getColor());
flower.putSelfInGrid(gr, loc);

ublic void processActors (ArrayList<Actor> actors)

s null
for (Actor a : actors)
2| if (!(a instanceof Rock) && ! (a instanceof Critter)) _ =
a.removeSelfFromGrid() ;
} I IRID: PUT
L rense— W

TO MAKE DIFFERENT CRITTERS:

NEVER OVERRIDE THE act () METHOD!

ArrayList<Actor> getActors()

void processActors (ArrayList<Actor> actors)
ArrayList<Location> getMoveLocations()

Location selectMoveLocation(ArrayList<Location> locs)
void makeMove(Location loc)

CRITTERS

Usually you need info from the grid:

Grid gr = anActor.getGrid();
Grid gr = this.getGrid();

getting occupied Locations returns Locations

not Actors!

ArrayList<Location> locs = gr.getOccupiedLocations();
ArrayList<Actor> actors = new ArrayList<Actor>();
for (Location loc:locs)
U
actors.add(gr.get(loc));
b

getActors/processActors NOTES

public ArrayList<Location> getMoveLocations()

Usually you need info from the grid:
Grid gr = anActor.getGrid();
Grid gr = this.getGrid();
check Uf its valid first!

if(gr.isvalid(loc) && gr.get(loc)==null)...

if(! gr.isvalid(loc))
return;

if(gr.isvalid(loc))
Location next =

if (gr.isValid(next))
locs.add (next);

loc.getAdjacentLocation(Direction.NORTH) ;

getMoveLocations NOTES

public Location selectMoveLocation(ArrayList<Location> locs)

if a condtion requires “default” behavior:

if (something==true)
return super.selectMoveLocation(locs);

YﬂVbdDVM,fVDVM.thC locs ArrayList<Location>

int rand = (int) (locs.size()*Math.random());
Location loc=locs.get(rand);

To die: don't removeSel fFromGrid-it changes state

return null;

Lf you cant move, and want to Live:

return this.getLocation();

Critter’s SelectMoveLocation NOTES

Kwnow how each of the actors move and act

Know the inheritance relationships
between the actors

Kwnow how to write subclasses of
bug or critter and how to modify
their default methods

Kinow how to use the quick reference

SUMMARY

