
GRIDWORLD
OVERVIEW
CHRIS THIEL, OFMCAP

SFHS APCS 2013

TEST

About one fourth of the AP exam will be on
Gridworld (5 to 10 multiple-choice questions, one

free response question)

You must be familiar with the Bug, BoxBug, Critter,
and ChameleonCritter classes

(including their implementation)

Know the documentation for location, Actor, Rock and
Flower classes, as well as the Grid interface

You’ll have the Quick Reference: containimg a list of
methods for these classes and the source code for

Bug,BoxBug, Critter and ChameleonCritter classes

WHAT IS TESTABLE?

THE IMPLEMENTATION OF THE CLASS IS TESTABLE.

YOU NEED TO KNOW ALL THE MEMBERS OF THE CLASS
AND ITS FUNCTIONALITY.

YOU NEED TO KNOW HOW TO CALL ANY METHOD OF THIS
CLASS FROM A CLIENT PROGRAM SEGMENT.

YOU UNDERSTAND THE IMPLEMENTATION CODE OF ANY
METHODS OF THE CLASS.

YOU ARE EXPECTED TO ALTER THE PROGRAM CODE OF THE
CLASS TO ALTER ITS BEHAVIOR

YOU NEED TO KNOW ALL THE MEMBERS OF THE CLASS
AND ITS FUNCTIONALITY (KNOW THE API!)

THE CLASSES

ROCKS
DO NOTHING

SEE APPENDIX E

APPENDIX B4

public class Rock extends Actor
{

 private static final Color DEFAULT_COLOR = Color.BLACK;

 /**
 * Constructs a black rock.
 */
 public Rock()
 {
 setColor(DEFAULT_COLOR);
 }

 /**
 * Constructs a rock of a given color.
 * @param rockColor the color of this rock
 */
 public Rock(Color rockColor)
 {
 setColor(rockColor);
 }

 /**
 * Overrides the <code>act</code> method in the <code>Actor</code> class
 * to do nothing.
 */
 public void act()
 {
 }
}

FLOWERS
DARKEN IN COLOR- SEE APPENDIX B4

public void act()
 {
 Color c = getColor();
 int red = (int) (c.getRed() * (1 - DARKENING_FACTOR));
 int green = (int) (c.getGreen() * (1 - DARKENING_FACTOR));
 int blue = (int) (c.getBlue() * (1 - DARKENING_FACTOR));

 setColor(new Color(red, green, blue));
 }

CODE NOT IN APPENDIX (BLACK BOX)

0

0

1

1

2

2

GUI

BUG
TRIES TO GO FORWARD, LEAVES A FLOWER IN OLD
LOCATION, EATS(REMOVES) FLOWER IN NEW LOCATION

IF BLOCKED TURN RIGHTS 45° (NON-FLOWERS BLOCK)

CODE IN APPENDIX ON PAGES C1-C2

BOX BUG
MOVES LIKE BUG, BUT TURNS 90°,

MAKES A BOX AFTER A GIVEN NUMBER OF TURNS TO
LEAVE BEHIND A SQUARE IF IT CAN

IF BLOCKED, TURNS TWICE TO RIGHT AND STARTS AGAIN

CODE IN APPENDIX ON PAGE C3

import info.gridworld.actor.Bug;

/**
 * A <code>BoxBug</code> traces out a square "box" of a given size.

 * The implementation of this class is testable on the AP CS A and AB exams.
 */
public class BoxBug extends Bug
{
 private int steps;
 private int sideLength;

 /**
 * Constructs a box bug that traces a square of a given side length
 * @param length the side length
 */
 public BoxBug(int length)
 {
 steps = 0;
 sideLength = length;
 }

 /**
 * Moves to the next location of the square.
 */
 public void act()
 {
 if (steps < sideLength && canMove())
 {
 move();
 steps++;
 }
 else
 {
 turn();
 turn();
 steps = 0;
 }
 }
}

PAGE C3: BOX BUG

CRITTER
GETS A LIST OF OF ADJACENT LOCATIONS

EATS EACH FLOWER OR BUG

MOVES TO RANDOM ADJACENT

IF NONE EMPTY IT DOESNT MOVE (?OR TURN? CHECK!)

CODE IN APPENDIX ON PAGES C4-C6

/**
* A Critter is an actor that moves through its world, processing * other actors in
some way and then moving to a new location.

* Define your own critters by extending this class and overriding any methods of this
class except for act. * When you override these methods, be sure to preserve the
postconditions.

* The implementation of this class is testable on the AP CS A and AB Exams.

*/

public class Critter extends Actor
{ /**

* A critter acts by getting a list of other actors, processing that list, getting locations
to move to, * selecting one of them, and moving to the selected location.
*/

 public void act()
 {
 if (getGrid() == null)
 return;
 ArrayList<Actor> actors = getActors();
 processActors(actors);
 ArrayList<Location> moveLocs = getMoveLocations();
 Location loc = selectMoveLocation(moveLocs);
 makeMove(loc);
}

/**
* Gets the actors for processing. Implemented to return the actors that occupy
neighboring grid locations. * Override this method in subclasses to look elsewhere
for actors to process.
* Postcondition: The state of all actors is unchanged.
* @return a list of actors that this critter wishes to process
*/

 public ArrayList<Actor> getActors()
 {
 return getGrid().getNeighbors(getLocation());
}

/**
* Processes the elements of actors. New actors may be added to empty locations. *
Implemented to “eat” (i.e., remove) selected actors that are not rocks or critters.
* Override this method in subclasses to process actors in a different way.
* Postcondition: (1) The state of all actors in the grid other than this critter and the *
elements of actors is unchanged. (2) The location of this critter is unchanged. *
@param actors the actors to be processed
*/

public void processActors(ArrayList<Actor> actors)
{
 for (Actor a : actors)
 {
 if (!(a instanceof Rock) && !(a instanceof Critter))
 a.removeSelfFromGrid();
} }

/**
* Gets a list of possible locations for the next move. These locations must be valid in the
grid of this critter. * Implemented to return the empty neighboring locations. Override
this method in subclasses to look
* elsewhere for move locations.
* Postcondition: The state of all actors is unchanged.
* @return a list of possible locations for the next move
*/

public ArrayList<Location> getMoveLocations()
{
 return getGrid().getEmptyAdjacentLocations(getLocation());
}

/**
* Selects the location for the next move. Implemented to randomly pick one of the
possible locations,
* or to return the current location if locs has size 0. Override this method in subclasses
that
* have another mechanism for selecting the next move location.
* Postcondition: (1) The returned location is an element of locs, this critter’s current
location, or null. * (2) The state of all actors is unchanged.
* @param locs the possible locations for the next move
* @return the location that was selected for the next move
*/

public Location selectMoveLocation(ArrayList<Location> locs)
{
 int n = locs.size();
 if (n == 0)
 return getLocation();
 int r = (int) (Math.random() * n);
 return locs.get(r);
}

public void makeMove(Location loc)
{
 if (loc == null)
 removeSelfFromGrid();
 else
 moveTo(loc);
}

CHAMELEON CRITTER
GETS A LIST OF OF ADJACENT NEIGHBORS

SWITCHES ITS COLOR TO THE SAME AS A RANDOM
NEIGHBOR

MOVES TO RANDOM ADJACENT AVAILABLE LOCATION,
BUT BEFORE IT DOES CHANGES ITS DIRECTION TO FACE
ITS NEW LOCATION

CODE IN APPENDIX ON C6

ChameleonCritter.java
import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Location;
import java.util.ArrayList;
/**
* A ChameleonCritter takes on the color of neighboring actors as it moves through the grid. *
The implementation of this class is testable on the AP CS A and AB Exams.
*/

public class ChameleonCritter extends Critter
{ /**

* Randomly selects a neighbor and changes this critter’s color to be the same as that neighbor’s. * If
there are no neighbors, no action is taken.
*/

 public void processActors(ArrayList<Actor> actors)
 {
 int n = actors.size();
 if (n == 0)
 return;
 int r = (int) (Math.random() * n);
 Actor other = actors.get(r);
 setColor(other.getColor());
 }
/**
* Turns towards the new location as it moves. */

 public void makeMove(Location loc)
 {
 setDirection(getLocation().getDirectionToward(loc));
 super.makeMove(loc);
} }

LOCATION
•encapsulates row and column

•has compass directions and angles

•Has methods for relationships between

•angles, compass direction and other locations

•Use page B1

N=0

S=180

E=90W=270

Location.NORTHusing outside the class:

EXAMPLE

setDirection(getDirection() + Location.RIGHT);

change direction to

the current direction + 90

LOCATION

ACTOR - B3

PRECONDITIONS

1. NOT IN A GRID,
2. LOC IS VALID

1. ACTOR IN A GRID

1. ACTOR IN A GRID
2.NEWLOC IS VALID IN THAT GRID

BUG- C1-2

1. override act() ok for bug
2. super.act() for default

BUG SUBCLASSES

When adding or removing actors, do not use the put and remove methods of the Grid
interface. Those methods do not update the location and grid instance variables of the
actor. That is a problem since most actors behave incorrectly if they do not know their location.
To ensure correct actor behavior, always use the putSelfInGrid and
removeSelfFromGrid methods of the Actor class.

To Make Different BUGS:

Override the act() method

•moveTo(),
•setColor()
•setDirection()
•putSelfInGrid()
•removeSelfFromGrid()

Learn the methods so you can make new sub classes

BOXBUG - C3

Adds two attributes

overwrites one method

CRITTER: C4-5

1. DO NOT TOUCH
CRITTER’S act()
METHOD!!!

1. DO NOT CHANGE STATE
 OF other ACTORs!

1. RETURN: ELEMENT OF (LOCS)
2. OR CURRENT LOCATION
3. OR NULL

1. CAN ONLY CHANGE THE STATE
OF ACTORS IN OLD/NEW LOCATION
2.USE moveTo(loc) TO UPDATE STATE
3. if (loc==null) removeSelfFromGrid()

1. OK CHANGE STATE OF THIS CRITTER ONLY!
2.ACTORS PARAM UNCHANGED
3.LOC OF THIS CRITTER UNCHANGED

CRITTER POSTCONDITIONS

CHAMELEONCRITTER

Overrides
two

methods

GRID<E>- PAGE B2

GRID: PUT

IllegalArgumentException if the
location is invalid

NullPointerException if the object is null

THROWS:
But usually from actors don’t call put ...instead:

INTERFACE AND ABSTRACT CLASSES

CRITTERS

TO MAKE DIFFERENT CRITTERS:

NEVER OVERRIDE THE act() METHOD!

ArrayList<Actor> getActors()
void processActors(ArrayList<Actor> actors)
ArrayList<Location> getMoveLocations()
Location selectMoveLocation(ArrayList<Location> locs)
void makeMove(Location loc)

getActors/processActors NOTES

Usually you need info from the grid:

Grid gr = anActor.getGrid();
Grid gr = this.getGrid();

getting occupied locations returns Locations
not Actors!

ArrayList<Location> locs = gr.getOccupiedLocations();
ArrayList<Actor> actors = new ArrayList<Actor>();
for (Location loc:locs)
{
 actors.add(gr.get(loc));
}

getMoveLocations NOTES

Usually you need info from the grid:
Grid gr = anActor.getGrid();
Grid gr = this.getGrid();

check if its valid first!

if(gr.isValid(loc) && gr.get(loc)==null)...

if(! gr.isValid(loc))
 return;

public ArrayList<Location> getMoveLocations()

if(gr.isValid(loc))
 Location next = loc.getAdjacentLocation(Direction.NORTH);
if (gr.isValid(next))
 locs.add(next);

Critter’s SelectMoveLocation NOTES

if a condtion requires “default” behavior:

if (something==true)
 return super.selectMoveLocation(locs);

random from the locs ArrayList<Location>

int rand = (int)(locs.size()*Math.random());
Location loc=locs.get(rand);

public Location selectMoveLocation(ArrayList<Location> locs)

To die: don’t removeSelfFromGrid-it changes state

return null;

if you cant move, and want to live:

return this.getLocation();

SUMMARY

Know how each of the actors move and act

Know the inheritance relationships
between the actors

Know how to write subclasses of
bug or critter and how to modify

their default methods

Know how to use the quick reference

