GRI

DWORL

B

OVERVIEW

CHRIS THIEL, OFMCAP

SFHS APCS 201=

MERAR SR RS =2 = =% 25 S = 2 2w S

About one fourth of the AP exam will be on
qridworlad (5 to 10 multiple-cholce questions, one
free response question)

You must be familiar with the Bug, BoxBug, Critter,
and ChameleonCritter classes
(tneluding their impLemew’catiow)

Kwnow the documentation for Location, Actor, Rock and
Flower classes, as well as the grid interface

Yow'll have the @uick Reference: containimg a List of
methoos for these classes and the source code for
. Buwo,BoxBuUg, Critter and ChameleonCritter classes

ey

AR SR ES A B L

THE IMPLEMENTATION OF THE CLASS IS TESTABLE.

YOU NEED TO KNOW ALL THE MEMBERS OF THE CLASS
AND TS FUNCTIONALITY.

YOU NEED TO KNOW HOW TO CALL ANY METHOD OF THIS
CLASS FROM A CLIENT PROGRAM SEGMENT.

YOU UNDERSTAND THE IMPLEMENTATION CODE OF ANY
METHODS OF THE CLASS.

YOU ARE EXPECTEDP TO ALTER THE PROGRAM CODPE OF THE
CLASS TO ALTER ITS BEHAVIOR

YOU NEED TO KNOW ALL THE MEMBERS OF THE CLASS
AND ITS FUNCTIONAUITY (KNOW THE APl!)

25 B EETE R B

Actor

Location

Flower Rock Bug Critter
BoxBug ChameleonCritter

<<interface>>

Grid

:

<<abstract>>
AbstractGrid

BoundedGrid

UnboundedGrid

THE CLASSES

ROCKS

[l DO NOTHING

public class Rock extends Actor

[1 SEEAPPENDIX E {
private static final Color DEFAULT_COLOR = Color.BLACK;

[l APPENDIX B4 /%%

* Constructs a black rock.
*/

public Rock()

{

}

setColor(DEFAULT_COLOR);

/%%

* Constructs a rock of a given color.

* @param rockColor the color of this rock
*/

public Rock(Color rockColor)

{

Iy

setColor(rockColor);

/%%

* Overrides the <code>act</code> method in the <code>Actor</code> class
* to do nothing.

*/

public void act()

{

+

0
pa il
1 e
X
7

HLOMVERS

[1 DPARKEN IN COLOR- SEE APPENDIX B4
CODE NOT IN APPENDIX (BRLACK BOX)

public void act()
{
Color c = getColor();
int red = (int) (c.getRed() * (1 - DARKENING_FACTOR));
int green = (int) (c.getGreen() * (1 — DARKENING_FACTOR));
int blue = (int) (c.getBlue() * (1 — DARKENING_FACTOR));

setColor(new Color(red, green, blue));

GUI Summary

Mouse Action

Keyboard Shortcut

Result

Click on an empty
location

Select empty location with
cursor keys and press the
Enter key

Shows the constructor menu

Click on an occupied
location

Select occupied location
with cursor keys and press
the Enter key

Shows the method menu

Select the Location ->
Delete menu item

Press the Delete key

Removes the occupant in the
currently selected location from
the grid

Click on the Step button

Calls act on each actor

Click on the Run button

Starts run mode (in run mode. the
action of the Step button is carried
out repeatedly)

Click on the Stop button
Adjust the Slow/Fast
slider

‘Stops run mode

Changes speed of run mode

Select the Location ->
Z.oom in/Zoom out
menu item

Adjust the scroll bars
next to grid

Press the Ctrl+PgUp /
Ctrl+PgDn keys

Move the location with the
cursor keys

Zooms grid display in or out

.Scrolls to other parts of the grid (if’

the grid is too large to fit inside
the window)

Select the World -> Set
erid menu item

Changes between bounded and
unbounded grids

Select the World ->
Quit menu item

Press the Ctrl+Q keys

Quits GridWorld

GUl

BUG

[1 TRIES TO GO FORWARD, LEAVES A FLOWER IN OLD
LOCATION, EATS (REMOVES) FLOWER IN NEW LOCATION

[l IFBLOCKED TURN RIGHTS 45° (NON-FLOWERS BLOCK)

[] CODE IN APPENDIX ON PAGES C1-C2

S EE B EE R i B B S - ————e e

e OO0 GridWorld

World Location Help

Click on a grid location to construct or manipulate an actor.

a
4

aadll.

e -
.00

Step Run Stop Slow =i —— Fast

BOX BUG

[1 MOVES LIKE BUG, BUT TURNS 90°,

[1 MAKES ABOX AFTER A GIVEN NUMBER OF TURNS TO
LEAVE BEHIND A SRUARE IF IT CAN

[] IFBLOCKED, TURNS TWICE TO RIGHT AND STARTS AGAIN

[1 CcODPE IN APPENDIX ON PAGE C3

S S S R e e - e ———— - r T | S T o sn pm o s g o

PAGE C3: BOX BUG

import info.gridworld.actor.Bug;

VESS
* A <code>BoxBug</code> traces out a square "box" of a given size.

* The implementation of this class is testable on the AP CS A and AB exams.

public class BoxBug extends Bug

i

private int steps;
private int sidelength;

/%%
* Constructs a box bug that traces a square of a given side length
* @param length the side length
*/
public BoxBug(int length)
{
steps = 0;
sideLength = length;
}

VESS
* Moves to the next location of the square.
*/
public void act()
{
if (steps < sidelength && canMove())
{
move();
steps++;
¥
else
{
turn();
turn();
steps = 0;

s4frees i ISt i puu i Mpns M

CRITTER

GETS A LIST OF OF ADJACENT LOCATIONS

EATS EACH FLOWER OR BUG
MOVES TO RANDOM ADJACENT
IF NONE EMPTY [T POESNT MOVE (?0R TURN? CHECK!)

CODPFE IN APPENDIX ON PAGES C4-Ce

25 B EETE R B

[**
* ACritter is an actor that moves through its world, processing * other actors in
some way and then moving to a new location.

* Define your own critters by extending this class and overriding any methods of this
class except for act. * When you override these methods, be sure to preserve the
postconditions.

* The implementation of this class is testable on the AP CS A and AB Exams.
=/

public class Critter extends Actor

{ [x*

* A critter acts by getting a list of other actors, processing that list, getting locations
to move to, * selecting one of them, and moving to the selected location.

=/

public void act()

{
if (getGrid() == null)

return;

ArrayList<Actor> actors = getActors();
processActors (actors);
ArrayList<Location> moveLocs = getMoveLocations();
Location loc = selectMoveLocation(moveLocs) ;
makeMove (loc) ;

b

[**

* Gets the actors for processing. Implemented to return the actors that occupy
neighboring grid locations. * Override this method in subclasses to look elsewhere
for actors to process.

* Postcondition: The state of all actors is unchanged.

* @return a list of actors that this critter wishes to process

=/

public ArrayList<Actor> getActors()

{
return getGrid().getNeighbors(getLocation());

/ * %

* Processes the elements of actors. New actors may be added to empty locations. *
Implemented to “eat” (i.e., remove) selected actors that are not rocks or critters.

* Override this method in subclasses to process actors in a different way.

* Postcondition: (1) The state of all actors in the grid other than this critter and the *
elements of actors is unchanged. (2) The location of this critter is unchanged. *

@param actors the actors to be processed
*/

public void processActors(ArrayList<Actor> actors)

{

for (Actor a : actors)

{

if (!(a instanceof Rock) && !(a instanceof Critter))
a.removeSelfFromGrid();

P}

/**

* Gets a list of possible locations for the next move. These locations must be valid in the
grid of this critter. * Implemented to return the empty neighboring locations. Override
this method in subclasses to look

* elsewhere for move locations.

* Postcondition: The state of all actors is unchanged.

* @return alist of possible locations for the next move
*/

public ArrayList<Location> getMoveLocations()

{
return getGrid().getEmptyAdjacentLocations(getLocation());

}

/ * %

* Selects the location for the next move. Implemented to randomly pick one of the
possible locations,

* or to return the current location if locs has size 0. Override this method in subclasses
that

* have another mechanism for selecting the next move location.

* Postcondition: (1) The returned location is an element of 1locs, this critter’s current
location, or null. * (2) The state of all actors is unchanged.

* @param locs the possible locations for the next move

* @return the location that was selected for the next move

*/
public Location selectMoveLocation(ArrayList<Location> locs)
{

int n = locs.size();

if (n == 0)

return getLocation();
int r = (int) (Math.random() * n);
return locs.get(r);

public void makeMove(Location loc)
{
if (loc == null)
} removeSelfFromGrid();
else
moveTo(loc);

CHAMELEON CRITTER

[l QETS A LIST OF OF ADJACENT NEIGHBORS

[1 SWITCHES ITS COLOR TO THE SAME AS A RANDOM
NEIGHBOR

[1 MOVES TO RANDOM ADJACENT AVAILABLE LOCATION,
BUT BEFORE IT POES CHANGES ITS PIRECTION TO FACE
(TS NEW LOCATION

[l corE IN APPENDIX ON C&

e r T T — ~ . . . - T R i = = =t o = = == =

ChameleonCritter.java

import info.gridworld.actor.Actor;

import info.gridworld.actor.Critter;

import info.gridworld.grid.Location;

import java.util.ArrayList;

[/ **

* A ChameleonCritter takes on the color of neighboring actors as it moves through the grid. *
The implementation of this class is testable on the AP CS A and AB Exams.

*/

public class ChameleonCritter extends Critter
{ /*'k

* Randomly selects a neighbor and changes this critter’s color to be the same as that neighbor’s. * If
there are no neighbors, no action is taken.

&7

public void processActors(ArrayList<Actor> actors)
{
int n = actors.size();
if (n == 0)
return;
int r = (int) (Math.random() * n);
Actor other = actors.get(r);
setColor (other.getColor());
}
/'k*

* Turns towards the new location as it moves. * /

public void makeMove (Location loc)

{
setDirection(getLocation().getDirectionToward(loc));
super .makeMove(loc);

bodli

static int in Location for relative angles sétlc int in Location for absolute direction N ‘ 0
AHEAD =0 NORTH =0
HALF_LEFT =-45 NORTH_EAST =45
HALF_RIGHT =45 EAST =90 E.
LEFT =-90 SOUTH_EAST = 135 5
RIGHT = 90 SOUTH = 180 W — 27_0 UL 6 =‘90
HALF_CIRCLE = 180 SOUTH_WEST = 225 ; g
CIRCLE = 360 WEST = 270 f
NORTH_WEST = 325

using outside the class: Location . NORTH

L OCATION

sencapsulates row and colummn

‘has compass directions and angles

*Has wmethods for relationships between
cangles, compass direction and other Locations

*Use page B1L

S S S R e e - T ———— v r T o e e e o s o Y T T

change direction to

setDirection(getDirection() + Location.RIGHT);

the current direction + 90

EXAMPLE

Actor <<interface>>
Grid
PaN =
Location T
<<abstract>>
AbstractGrid
Flower Rock Bug Critter
BoxBug ChameleonCritter BoundedGrid UnboundedGrid
Location
static int in Location for absolute direction Properties
static int in Location for relative angles -row ' int
NORTH =0 ~ -col : int
NORTH_EAST = 45 Ll it
EAST = 90 HALF_LEFT =-45 Constrctors
- = Location
SOUTH_EAST = 135 T . 0
LEFT =-90 Location(row, col)
SOCTHR0 RIGHT =90 Location(Location)
i i HALF_CIRCLE = 180
WEST = 270 - -
NORTH_WEST = 325 SARGEE= 960 Methods
- o + getRow (): int

+ getCol () : int

+ getAdjacentLocation (Direction) : Location
+ getDirectionToward (Location) : Direction
+ equals(Location) : boolean

+ compareTo(Location) : int

+ toString () : String

LOCATION

Actor

<<interface>>

Flower Rock Bug Critter
BoxBug ChameleonCritter

PRECONDITIONS

1. ACTOR IN A GRID
2.NEWLOC IS VAUID IN THAT GRID

T — ——

1. NOT IN A GRID,
2. LOC IS VALID

L —

1. ACTOR IN A GRID

10—

Grid

i

Method Summary

void|act()

Reverses the direction of this actor.

Bounde
Color|getColor()

Gets the color of this actor.

int|getDirection()
Gets the current direction of this actor.

Grid<Actor>|getGrid()
Gets the grid in which this actor is located.

Location|getLocation()
Gets the location of this actor.

:ti moveTo(Location newLocation)
Moves this actor to a new location.

putSelfInGrid(Grid<Actor> gr, Location loc)
Puts this actor into a grid.

removeSelfFromGrid()

Removes this actor from its grid.

setColor(Color newColor)
Sets the color of this actor.

void|getDirection(int newDirection)
Sets the current direction of this actor.

Strind|toString()

Creates a string that describes this actor.
S —

ACTOR - B=

<<interface>>

Actor
Grid
VAN ~
Location T
<<abstract>>
AbstractGrid
Flower Rock Bug Critter
;mn Location Help
Click on a grid location 10 consiruct or manipulste an actor
[[[[1 Method Summary 1. override act () ok for bug

§ mnfogridwerldactor.Bug()
® nfogridwerdactorBug(javaawsCelor)

® nragridwerld.actornRock()
® info.gridwerld.actorRockd java awr.Color)

&

boolean

canMove() éfﬂﬁm:t?‘” P
Tests whether this byg-e#fi moyg®orward into
a location that is empe*dt contaipgd flower.

void I y

move() G P
Moves the bug fefvard, putting a flower into
the location it preyielisly occupied.

void turn() - k
Turns the bug 45 degrees to the right without

changing its location.

2. super.act () for default

Step Stop .Sl-w el Fast

BUGE Cr2

When adding or removing actors, do not use the put and remove methods of the Grid
interface. Those methods do not update the location and grid instance variables of the
actor. That is a problem since most actors behave incorrectly if they do not know their location.
To ensure correct actor behavior, always use the putSelfInGrid and
removeSelfFromGrid methods of the Actor class.

To Make Different BUGS:

override the act () method

emoveTo (),
esetColor ()
esetDirection()
eputSelfInGrid()

BUG SUBCLASSES

Write a class ZBug to implement bugs that move in a “Z” pattern, starting in the
top left corner. After completing one “Z" pattern, a ZBug should stop moving.
In any step, ifa ZBug can’t move and 1s still attempting to complete its “Z”
pattern, the ZBug does not move and should not turn to start a new side. Supply
the length of the “Z™ as a parameter in the constructor. The following image
shows a “Z" pattern of length 4. Hint: Notice that a ZBug needs to be facing

east before beginning its “Z” pattern.

Yorld Location Help

Ik on & 9N ISCamion 19 CONIect oF Manpuiate an acor

W | W
w | %

| Sup Run Step Slow O ramt

Learn the methods so You can ma ke new sub classes

® OO0 GridWorld

World Location Help

Mushroom Bug Runner

\ Step | | Run | Stop Slow f—xr— Fast

eNO GridWorld

World Location Help

You can add more planes and missiles buy clicking on a grid location.

Step Run Slow ===f{)= Fast

Actor

Location

Flower Rock Bug Critter
BoxBug ChameleoncCritter

<<interface>>
Grid

:

<<abstract>>
AbstractGrid

e

BoundedGrid

Adds two attributes

overwrites one method

public BoxBug(int length)

{
steps = 0;
sideLength = length;

public void act()

{

if (steps < sidelength && canMove())

move () ;
steps++;

}

else

turn() ;
turn() ;

steps = 0;

}

UnboundedGrid

Actor <<interface>>
Grid
PaN
Location T
<<abstract>>
AbstractGrid
Flower Rock Bug Critter /\
BoxBug ChameleonCritter BoundedGrid UnboundedGrid

L1100 IIia

‘ voidlact()
1. PO NOT ToOUCH

CRITTER'S act ()

!
|
l

processing that list, getting loca

A critter acts by getting a listg “ia,
S 0

1. PO NOT CHANGE STATE
OF other ACTORS!

0 ——

acyfrs, §

METHODI!!! selecting one of them and eV mg _e Ected
location. 4 ‘
Arralest(ACtOr> gethctors() 3
Gets the actors for‘ dIQ
1. CAN ONLY CHANGE THE STATE ion>|getMoveLocations ()

OF ACTORS IN OLD/NEW LOCATION

Gets a list of possible locatig 1s for the ncxt nove.

2.USE moveTo(loc) TO UPDATE STATE 2 SkmakeMove(Location loc)

2. if (loc==null) removeSelfFromGrid ()

removes this critter from it

Moves this critter to thegi

geiven location lodf or
d if 1oc iS null.

— i 3
?—— VOJ_-d> processhctors(Arrale t<Actor> actors) ‘

Processes the elements of actors.

selectMoveLocation(ArrayList<Location> locs)

2 ACTORS PARAM UNCHANGED
2.LOC OF THIS CRITTER UNCHANGED

1. OK CHANGE STATE OF THIS CRITTER ONLY'!

Selects the locatio

lor the next

1.
2.
3.

RETURN: ELEMENT OF (LOCS)
OR CURRENT LOCATION
OR NuUuLL

getActors The state of all actors is unchanged.
(1) The state of all actors in the grid other than this
processActors critter and the elements of actors is unchanged. (2) The
location of this critter is unchanged.
getMoveLocations ||The state of all actors is unchanged.

selectMovelLocation

(1) The returned location is an element of locs, this
critter's current location, or null. (2) The state of all
actors is unchanged.

makeMove

(1) getLocation() == loc.(2) The state of all actors
other than those at the old and new locations is
unchanged.

CRITTER POSTCONDITIONS

<<interface>>

Actor

Grid

T Location T
<<abstract>>
AbstractGrid

Flower Rock Bug Critter /‘T'\
BoxBug ChameleonCritter BoundedGrid UnboundedGrid
public void processActors (ArrayList<Actor> actors)
I d
int n = actors.size();
return;
two int r = (int) (Math.random() * n);

methoos

Actor other = actors.get(r);
setColor (other.getColor()) ;

}
/**

* Turns towards the new location as it moves.
* /

public void makeMove (Location loc)

setDirection(getLocation() .getDirectionToward(loc)) ;
super.makeMove (loc) ;

}

CHAMELEONCRITTER

 Method
getNeighbors N

Method Summary o(1) o(1)
getValidAdjacentLocations O(1) O(1)
E|get(Location loc) getEmptyAdjacentLocations O(1) o(1)
Returns the object at a given location in this gri¢ SO;UCCUPiedAdJ acentLocations O(1) o(1)
ArrayList<Location>|getEmptyAdjacentLocations(Location loc) ;:t;zz:giodl.ocat ions gg:sg 85:;
Gets the valid empty locations adjacent to a givi get o(1) o(1)
compass directions (north, northeast, east, southeast, s put 0O(1) o(1)

northwest). Temove o(1)

ArrayList<E>

getNeighbors (Location loc)
Gets the neighboring occupants in all eight compass
northeast, east, southeast, south, southwest, west, and northwest).

int

getNumCols ()
Returns the number of columns in this grid.

int

getNumRows ()
Returns the number of rows in this grid.

ArrayList<Location>

getOccupiedAdjacentlLocations(Location loc)
Gets the valid occupied locations adjacent to a given location in all eight

compass directions (north, northeast, east, southeast, south, southwest, west, and
northwest).

ArrayList<Location>

getOccupiedLocations()
Gets the locations in this grid that contain objects.

ArrayList<Location>

getValidAdjacentLocations(Location loc)
Gets the valid locations adjacent to a given location in all eight compass
directions (north, northeast, east, southeast, south, southwest, west, and northwest).

boolean

isValid(Location loc)

Checks whether a location is valid in this grid.

]

put(Location loc, E obj)
Puts an object at a given location in this grid.

It

remove (Location loc)
Removes the object at a given location from this grid.

GRID<E>- PAGE B2

'Lgoundonr;qh' A»Upboundedcrid

o(1)

put

E put(Location loc,
E obj)

Puts an object at a given location in this grid.
Precondition: (1) loc is valid in this grid (2) obj is not null

Parameters:
loc - the location at which to put the object
obj - the new object to be added
Returns:
the object previously at 1oc (or null if the location was previously unoccupied)

But usually from actors don't call put ...instead:

-

if (gr.isValid(next)7
moveTo (next) ;

S n if the

removeSelfFromGrid () ;
Flower flower = new Flower (getColor());
flower.putSelfInGrid(gr, loc);

R — —
public void processActors (ArrayList<Actor> actors)

for (Actor a : actors)

if (! (a instanceof Rock) && ! (a instanceof Critter))
a.removeSelfFromGrid() ;

R ——— R

Ls bl

RID: PUT

Actor <<interface>>
Grid
L [
<<abstract>>
AbstractGrid
Flower Rock Bug Critter
BoxBug ChameleonCritter BoundedGrid UnboundedGrid

Constructor Summary

AbstractGrid()

Method Summary

ArrayList<Location>|getEmptyAdjacentLocations(Location loc)
Gets the valid empty locations adjacent to a given location in all eight compass
directions (north, northeast, east, southeast, south, southwest, west, and northwest).

ArrayList<E>|getNeighbors(Location loc)
Gets the neighboring occupants in all eight compass directions (north, northeast,
east, southeast, south, southwest, west, and northwest).

ArrayList<Location>|getOccupiedAdjacentLocations(Location loc)
Gets the valid occupied locations adjacent to a given location in all eight compass
directions (north, northeast, east, southeast, south, southwest, west, and northwest).

ArrayList<Location>|getValidAdjacentLocations(Location loc)
Gets the valid locations adjacent to a given location in all eight compass directions
(north, northeast, east, southeast, south, southwest, west, and northwest).

String|toString()
Creates a string that describes this grid.

INTERFACE AND ABSTRACT CLASSES

N R R R R R TR T T e Yy

TO MAKE DIFFERENT CRITTERS:

NEVER OVERRIDE THE act () METHOD!

ArrayList<Actor> getActors()

void processActors(ArrayList<Actor> actors)
ArrayList<Location> getMoveLocations/()

Location selectMoveLocation(ArrayList<Location> locs)
void makeMove (Location loc)

Usually you need tnfo from the grid:

Grid gr = anActor.getGrid();
Grid gr = this.getGrid();

getting occupied Locations returns Locations
not Actors!

ArrayList<Location> locs = gr.getOccupiedLocations();
ArrayList<Actor> actors = new ArrayList<Actor>();
for (Location loc:locs)

{
actors.add(gr.get(loc));

}

getActors/processActors NOTES

= e e e

public ArrayList<Location> getMoveLocations()

Usually you need wnfo from the grid:

Grid gr = anActor.getGrid();
Grid gr = this.getGrid();

check Lf tts valid first!
if(gr.isValid(loc) && gr.get(loc)==null)...

if(! gr.isValid(loc))
return;

if(gr.isValid(loc))

Location next = 1oc.getAdjacentLocation(Direction.NORTH){
if (gr.isValid(next)) |
locs.add (next);

getMovelLocations NOTES

public Location selectMovelLocation(ArrayList<Location> locs)
Lf a condtion requires “default” behavior:

if (something==true)
return super.selectMovelLocation(locs);

ra WD[DVM, fYDVM, the 1ocs ArrayList<Location>

int rand = (int) (locs.size()*Math.random());
Location loc=locs.get(rand);

To die: don't removeSel fFromGrid-it changes state

return null;

0 You cant move, and want to Live:

return this.getLocation();

Critter’s SelectMovelocation NOTES

= e T o e e R

Kwnow how each of the actors move and act

Know the Lnherttance reLatLowships
betweewn the actors

Kwnow how to write subclasses of
bug or critter and how to modify
thetr default methods

Kinow how to use the quick reference

